A276655 Numbers j such that Sum_{p|j} 0.p is an integer where p ranges over the prime divisors of j.
1, 21, 30, 60, 63, 90, 120, 147, 150, 180, 189, 240, 270, 300, 360, 441, 450, 480, 540, 567, 600, 720, 750, 810, 900, 960, 979, 1029, 1080, 1200, 1323, 1350, 1411, 1440, 1463, 1500, 1547, 1620, 1701, 1742, 1800, 1920, 1947, 2059, 2090, 2160, 2210, 2250, 2318
Offset: 1
Examples
The prime divisors of 60 are 2, 3, and 5, and 0.2 + 0.3 + 0.5 = 1, so 60 is a term.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..1000000] | Denominator(&+[d/(10^(#Intseq(d))): d in PrimeDivisors(n)]) eq 1]
-
Mathematica
{1}~Join~Select[Range[2400], IntegerQ@ Total[# 10^(-Floor@ Log10@ # - 1) &@ FactorInteger[#][[All, 1]]] &] (* Michael De Vlieger, Sep 12 2016 *)
-
PARI
is(n)=my(f=factor(n)[,1]); denominator(sum(i=1,#f, f[i]/10^#Str(f[i])))==1 \\ Charles R Greathouse IV, Sep 10 2016
Formula
A276652(a(n)) = 1.
Extensions
a(1) inserted by Charles R Greathouse IV, Sep 10 2016
Comments