A276664 Number of solutions to the congruence y^2 == x^3 - x^2 + 4*x - 4 (mod p) as p runs through the primes.
2, 1, 6, 9, 11, 11, 23, 15, 29, 23, 27, 35, 35, 33, 41, 59, 71, 59, 69, 59, 71, 87, 89, 95, 95, 95, 117, 101, 107, 119, 129, 131, 119, 135, 155, 171, 179, 153, 185, 179, 167, 191, 179, 167, 179, 207, 195, 213, 221, 215, 239, 215, 227, 251, 263, 245, 251, 291, 251
Offset: 1
Keywords
Examples
The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. The solutions (x, y) of y^2 == x^3 - x^2 + 4*x - 4 (mod prime(n)) begin: n, prime(n), a(n)\ solutions (x, y) 1, 2, 2: (0, 0), (1, 0) 2, 3, 1: (1, 0) 3, 5, 6: (0, 1), (0, 4), (1, 0), (3, 1), (3, 4), (4, 0) 4, 7, 9: (1, 0), (2, 1), (2, 6), (4, 2), (4, 5), (5, 2), (5, 5), (6, 2), (6, 5)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Yves Martin and Ken Ono, Eta-Quotients and Elliptic Curves, Proc. Amer. Math. Soc. 125, No 11 (1997), 3169-3176.
Programs
-
Ruby
require 'prime' def A276664(n) ary = [] Prime.take(n).each{|p| a = Array.new(p, 0) (0..p - 1).each{|i| a[(i * i) % p] += 1} ary << (0..p - 1).inject(0){|s, i| s + a[(i * i * i - i * i + 4 * i - 4) % p]} } ary end
Formula
a(n) gives the number of solutions of the congruence y^2 == x^3 - x^2 + 4*x - 4 (mod prime(n)), n >= 1.
Comments