A276670 Numerator of (n-1)*n*(n+1)/4.
0, 0, 3, 6, 15, 30, 105, 84, 126, 180, 495, 330, 429, 546, 1365, 840, 1020, 1224, 2907, 1710, 1995, 2310, 5313, 3036, 3450, 3900, 8775, 4914, 5481, 6090, 13485, 7440, 8184, 8976, 19635, 10710, 11655, 12654, 27417, 14820, 15990, 17220, 37023, 19866, 21285
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,4,0,0,0,-6,0,0,0,4,0,0,0,-1).
Programs
-
Maple
seq(numer((n^3-n)/4), n=0..100); # Robert Israel, Oct 05 2016
-
Mathematica
f[n_] := Numerator[(n - 1) n (n + 1)/4]; Array[f, 40, 0] (* Robert G. Wilson v, Oct 05 2016 *)
-
PARI
concat(vector(2), Vec(3*x^2*(1 +2*x +5*x^2 +10*x^3 +31*x^4 +20*x^5 +22*x^6 +20*x^7 +31*x^8 +10*x^9 +5*x^10 +2*x^11 +x^12) / ((1 -x)^4*(1 +x)^4*(1 +x^2)^4) + O(x^30))) \\ Colin Barker, Oct 09 2016
Formula
a(n) = 3*A138190(n), for n>=1.
a(n) = 4*a(n-4) - 6*a(n-8) + 4*a(n-12) - a(n-16).
a(n) = A007531(n+1)/2 if n == 2 (mod 4), otherwise a(n) = A007531(n+1)/4. - Robert Israel, Oct 05 2016
G.f.: 3*x^2*(1 +2*x +5*x^2 +10*x^3 +31*x^4 +20*x^5 +22*x^6 +20*x^7 +31*x^8 +10*x^9 +5*x^10 +2*x^11 +x^12) / ((1 -x)^4*(1 +x)^4*(1 +x^2)^4). - Colin Barker, Oct 09 2016
Sum_{n>=2} 1/a(n) = 1 - log(2)/2. - Amiram Eldar, Aug 13 2022
Extensions
More terms from Robert G. Wilson v, Oct 05 2016
Comments