A276672 Numbers k such that (19*10^k + 101) / 3 is prime.
1, 3, 4, 9, 10, 12, 13, 16, 20, 37, 57, 66, 106, 116, 127, 355, 396, 547, 2289, 3777, 4500, 7821, 15663, 22746, 25978, 30434, 39682, 119716, 133390, 145093, 200260
Offset: 1
Examples
3 is in this sequence because (19*10^3 + 101) / 3 = 6367 is prime. Initial terms and associated primes: a(1) = 1, 97; a(2) = 3, 6367; a(3) = 4, 63367; a(4) = 9, 6333333367; a(5) = 10, 63333333367, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 63w67.
Programs
-
Magma
[n: n in [0..400] |IsPrime((19*10^n + 101) div 3)]; // Vincenzo Librandi, Sep 13 2016
-
Mathematica
Select[Range[0, 100000], PrimeQ[(19*10^# + 101) / 3] &]
-
PARI
is(n)=ispseudoprime((19*10^n + 101)/3) \\ Charles R Greathouse IV, Jun 13 2017
Extensions
a(28)-a(30) from Robert Price, Sep 01 2019
a(31) from Robert Price, Jul 13 2023
Comments