A276687 Number of prime plane trees of weight prime(n).
1, 1, 2, 4, 11, 30, 122, 336, 1412, 15129, 44561, 417542, 2479120, 7540843, 35983502, 451454834, 5313515136, 16809858904, 190077477328, 1124302066470, 3521811953565, 38563707677633, 240966297786218, 3192420711942298, 95433674596402663, 567734580765228356
Offset: 1
Keywords
Examples
The a(5) = 11 prime plane trees of weight A000040(5) = 11 are: {11, (3,3,5), (3,3,(2,3)), (2,2,7), (2,2,(2,5)), (2,2,(2,(2,3))), (2,2,(2,2,3)), (2,3,3,3), (2,2,2,5), (2,2,2,(2,3)), (2,2,2,2,3)}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..681
- Gus Wiseman, Comcategories and Multiorders, (pdf version)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=2, 0, b(n, prevprime(i)))+`if`(i>n, 0, b(n-i, i)*(1+ `if`(i>2, b(i, prevprime(i)), 0)))) end: a:= n-> `if`(n<3, 1, 1+b(ithprime(n), ithprime(n-1))): seq(a(n), n=1..40); # Alois P. Heinz, Sep 15 2016
-
Mathematica
n=20; ser=Product[1/(1-c[Prime[i]]*x^Prime[i]),{i,1,n}]; sys=Table[c[Prime[i]]==Expand[SeriesCoefficient[ser,{x,0,Prime[i]}]-c[Prime[i]]+1],{i,1,n}]; Block[{c},Set@@@sys]
Comments