cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276696 Triangle read by rows, T(n,k) = T(n-1, k-1) + T(n-2, k) if k is odd, T(n-1, k-1) + T(n-1, k) if k is even, for k<=0<=n and n>=2 with T(0,0)=T(1,0)=T(1,1)=0 and T(n,k)=0 when k>n, k<0, or n<0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 3, 6, 5, 3, 1, 1, 3, 9, 8, 8, 3, 1, 1, 4, 12, 14, 16, 9, 4, 1, 1, 4, 16, 20, 30, 19, 13, 4, 1, 1, 5, 20, 30, 50, 39, 32, 14, 5, 1, 1, 5, 25, 40, 80, 69, 71, 36, 19, 5, 1, 1, 6, 30, 55, 120, 119, 140, 85, 55, 20, 6, 1
Offset: 0

Views

Author

Michel Marcus, Sep 14 2016

Keywords

Comments

This is the triangle frst(n,k) in the Ehrenborg and Readdy link. See Definition 3.1 and Table 1.

Examples

			Triangle starts:
  1;
  1, 1;
  1, 1, 1;
  1, 2, 2, 1;
  1, 2, 4, 2, 1;
  1, 3, 6, 5, 3, 1;
  1, 3, 9, 8, 8, 3, 1;
  ...
		

Crossrefs

Cf. A169623 (the triangle er).

Programs

  • Mathematica
    T[n_, n_] = T[, 0] = 1; T[n, k_] /; 0 <= k <= n := T[n, k] = If[OddQ[k], T[n-1, k-1] + T[n-2, k], T[n-1, k-1] + T[n-1, k]]; T[, ] = 0;
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 28 2018 *)
  • PARI
    frst(n, k) = if ((k>n) || (n<0) || (k<0), 0, if (n<=2, 1, if (k==0, 1, if (k%2, frst(n-1, k-1) + frst(n-2, k), frst(n-1, k-1) + frst(n-1, k)))));
    tf(nn) = for (n=0, nn, for (k=0, n, print1(frst(n,k), ", ");); print(););