A276709 Decimal expansion of the derivative of logarithmic integral at its positive real root.
2, 6, 8, 4, 5, 1, 0, 3, 5, 0, 8, 2, 0, 7, 0, 7, 6, 5, 2, 5, 0, 2, 3, 8, 2, 6, 4, 0, 4, 8, 7, 2, 3, 8, 6, 8, 5, 3, 1, 0, 1, 7, 9, 7, 3, 4, 5, 9, 8, 5, 5, 1, 6, 3, 5, 2, 2, 0, 4, 1, 4, 8, 6, 4, 5, 0, 2, 6, 4, 1, 1, 3, 3, 6, 3, 1, 7, 6, 7, 2, 4, 4, 8, 9, 3, 6, 2, 5, 0, 2, 2, 0, 1, 2, 5, 4, 8, 5, 2, 1, 5, 3, 6, 5, 0
Offset: 1
Examples
2.68451035082070765250238264048723868531017973459855163522041486450...
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..2000
- Eric Weisstein's World of Mathematics, Logarithmic Integral
- Wikipedia, Logarithmic integral function
Programs
-
Mathematica
1/x/.FindRoot[ExpIntegralEi[x] == 0, {x, 1}, WorkingPrecision -> 104] (* Vaclav Kotesovec, Sep 27 2016 *)
-
PARI
li(z) = {my(c=z+0.0*I); \\ Computes li(z) for any complex z if(imag(c)<0,return(-Pi*I-eint1(-log(c))),return(+Pi*I-eint1(-log(c))));} a = 1/log(solve(x=1.1,2.0,real(li(x)))) \\ Computes this constant
Comments