A276715 a(n) = the smallest number k such that k and k + n have the same number and sum of divisors (A000005 and A000203).
1, 14, 33, 42677635, 51, 46, 155, 62, 69, 46, 174, 154, 285, 182, 141, 62, 138, 142, 235, 158, 123, 94, 213, 322, 295, 94, 177, 118, 159, 406, 376, 266, 177, 891528365, 321, 310, 355, 248, 249, 166, 213, 418, 376, 602, 426, 142, 570, 310, 445, 248, 249, 158
Offset: 0
Keywords
Examples
a(2) = 33 because 33 is the smallest number such that tau(33) = tau(35) = 4 and simultaneously sigma(33) = sigma(35) = 48.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Magma
A276715:=func
; [A276715(n):n in[0..32]] -
Mathematica
a[k_] := Module[{n=1}, While[DivisorSigma[0,n] != DivisorSigma[0,n+k] || DivisorSigma[1,n] != DivisorSigma[1,n+k], n++]; n]; Array[a, 50, 0] (* Amiram Eldar, Feb 17 2019 *)
-
Python
from itertools import count from sympy import divisor_sigma def A276715(n): return next(k for k in count(1) if all(divisor_sigma(k,i)==divisor_sigma(n+k,i) for i in (0,1))) # Chai Wah Wu, Jul 25 2022
Extensions
a(33) onwards from Amiram Eldar, Feb 17 2019
Comments