A276719 Number A(n,k) of set partitions of [n] such that for each block b the smallest integer interval containing b has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 5, 5, 1, 0, 1, 1, 2, 5, 10, 8, 1, 0, 1, 1, 2, 5, 15, 20, 13, 1, 0, 1, 1, 2, 5, 15, 37, 42, 21, 1, 0, 1, 1, 2, 5, 15, 52, 87, 87, 34, 1, 0, 1, 1, 2, 5, 15, 52, 151, 208, 179, 55, 1, 0, 1, 1, 2, 5, 15, 52, 203, 409, 515, 370, 89, 1, 0
Offset: 0
Examples
A(3,2) = 3: 12|3, 1|23, 1|2|3. A(4,3) = 10: 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|24|3, 1|2|34, 1|2|3|4. A(5,4) = 37: 1234|5, 123|45, 123|4|5, 124|35, 124|3|5, 12|345, 12|34|5, 12|35|4, 12|3|45, 12|3|4|5, 134|25, 134|2|5, 13|245, 13|24|5, 13|25|4, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 1|2345, 1|234|5, 1|235|4, 1|23|45, 1|23|4|5, 14|25|3, 14|2|35, 14|2|3|5, 1|245|3, 1|24|35, 1|24|3|5, 1|25|34, 1|2|345, 1|2|34|5, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 2, 2, 2, 2, 2, 2, ... 0, 1, 3, 5, 5, 5, 5, 5, 5, ... 0, 1, 5, 10, 15, 15, 15, 15, 15, ... 0, 1, 8, 20, 37, 52, 52, 52, 52, ... 0, 1, 13, 42, 87, 151, 203, 203, 203, ... 0, 1, 21, 87, 208, 409, 674, 877, 877, ... 0, 1, 34, 179, 515, 1100, 2066, 3263, 4140, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..40, flattened
- Pierpaolo Natalini, Paolo Emilio Ricci, New Bell-Sheffer Polynomial Sets, Axioms 2018, 7(4), 71.
- Wikipedia, Partition of a set
Crossrefs
Programs
-
Maple
b:= proc(n, m, l) option remember; `if`(n=0, 1, add(b(n-1, max(m, j), [subsop(1=NULL, l)[], `if`(j<=m, 0, j)]), j={l[], m+1} minus {0})) end: A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))): seq(seq(A(n, d-n), n=0..d), d=0..14);
-
Mathematica
b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0&, k-1]]]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)
Formula
A(n,k) = Sum_{i=0..k} A276727(n,i).
Comments