cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A276719 Number A(n,k) of set partitions of [n] such that for each block b the smallest integer interval containing b has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 5, 5, 1, 0, 1, 1, 2, 5, 10, 8, 1, 0, 1, 1, 2, 5, 15, 20, 13, 1, 0, 1, 1, 2, 5, 15, 37, 42, 21, 1, 0, 1, 1, 2, 5, 15, 52, 87, 87, 34, 1, 0, 1, 1, 2, 5, 15, 52, 151, 208, 179, 55, 1, 0, 1, 1, 2, 5, 15, 52, 203, 409, 515, 370, 89, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 16 2016

Keywords

Comments

The sequence of column k satisfies a linear recurrence with constant coefficients of order 2^(k-1) for k>0.

Examples

			A(3,2) = 3: 12|3, 1|23, 1|2|3.
A(4,3) = 10: 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|24|3, 1|2|34, 1|2|3|4.
A(5,4) = 37: 1234|5, 123|45, 123|4|5, 124|35, 124|3|5, 12|345, 12|34|5, 12|35|4, 12|3|45, 12|3|4|5, 134|25, 134|2|5, 13|245, 13|24|5, 13|25|4, 13|2|45, 13|2|4|5, 14|235, 14|23|5, 1|2345, 1|234|5, 1|235|4, 1|23|45, 1|23|4|5, 14|25|3, 14|2|35, 14|2|3|5, 1|245|3, 1|24|35, 1|24|3|5, 1|25|34, 1|2|345, 1|2|34|5, 1|25|3|4, 1|2|35|4, 1|2|3|45, 1|2|3|4|5.
Square array A(n,k) begins:
  1, 1,  1,   1,   1,    1,    1,    1,    1, ...
  0, 1,  1,   1,   1,    1,    1,    1,    1, ...
  0, 1,  2,   2,   2,    2,    2,    2,    2, ...
  0, 1,  3,   5,   5,    5,    5,    5,    5, ...
  0, 1,  5,  10,  15,   15,   15,   15,   15, ...
  0, 1,  8,  20,  37,   52,   52,   52,   52, ...
  0, 1, 13,  42,  87,  151,  203,  203,  203, ...
  0, 1, 21,  87, 208,  409,  674,  877,  877, ...
  0, 1, 34, 179, 515, 1100, 2066, 3263, 4140, ...
		

Crossrefs

Main diagonal gives A000110.
A(n+1,n) gives A005493(n-1) for n>0.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, 1, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[n == 0, 1, If[k < 2, k, b[n, 0, Array[0&, k-1]]]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{i=0..k} A276727(n,i).

A276840 Number of permutations of [n] such that for each cycle c the smallest integer interval containing all elements of c has at most six elements.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 2520, 8400, 28728, 103050, 390555, 1566813, 5994636, 22318676, 82337580, 304360184, 1134352752, 4275368704, 16107425628, 60453074344, 226179710040, 845165016029, 3159696003981, 11832636916230, 44346582492034, 166184942954284
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2016

Keywords

Crossrefs

Column k=6 of A276837.
Cf. A276722.

Formula

G.f.: -(x^22 +2*x^20 -2*x^19 -44*x^18 +22*x^17 +60*x^16 -4*x^15 +40*x^14 -102*x^13 -120*x^12 -4*x^11 -8*x^10 -142*x^9 +2*x^8 +28*x^7 +42*x^6 -8*x^5 +12*x^4 +8*x^3 +2*x^2 -1) / (x^32 +9*x^31 +9*x^30 -19*x^29 +59*x^28 -461*x^27 -2227*x^26 -977*x^25 +2109*x^24 +655*x^23 -947*x^22 -8178*x^21 -13502*x^20 +1258*x^19 +11266*x^18 -12018*x^17 -32910*x^16 -12790*x^15 +2866*x^14 +6174*x^13 +4666*x^12 +5578*x^11 +3425*x^10 +1037*x^9 -523*x^8 -639*x^7 -449*x^6 -37*x^5 -15*x^4 -9*x^3 -3*x^2 -x +1).

A276896 Number of ordered set partitions of [n] such that for each block b the smallest integer interval containing b has at most six elements.

Original entry on oeis.org

1, 1, 3, 13, 75, 541, 4683, 42610, 417464, 4438936, 51245936, 640642456, 8640223604, 124868055888, 1924066147008, 31484641736040, 545300469146760, 9967163998036554, 191772882094520910, 3874791064947232008, 82035921068376624096, 1816274191193756670912
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2016

Keywords

Crossrefs

Column k=6 of A276890.
Cf. A276722.

Programs

  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, m!, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; a[n_] := b[n, 0, Table[0, {5}]]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 18 2017, after Alois P. Heinz *)

Formula

a(n) ~ exp(5) * n!. - Vaclav Kotesovec, Sep 22 2016

A320556 Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most six elements and for at least one block c the smallest integer interval containing c has exactly six elements.

Original entry on oeis.org

52, 265, 966, 3172, 10100, 32918, 111138, 373888, 1238236, 4034221, 12991481, 41567855, 132719006, 423099220, 1346053178, 4271656023, 13520858094, 42696919677, 134582517515, 423599583268, 1331701708711, 4182193622677, 13121508724973, 41131777789545
Offset: 6

Views

Author

Alois P. Heinz, Oct 15 2018

Keywords

Crossrefs

Column k=6 of A276727.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    a:= n-> (k-> A(n, k) -`if`(k=0, 0, A(n, k-1)))(6):
    seq(a(n), n=6..50);

Formula

a(n) = A276722(n) - A276721(n).

A320557 Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most seven elements and for at least one block c the smallest integer interval containing c has exactly seven elements.

Original entry on oeis.org

203, 1197, 4971, 18223, 63768, 220419, 779242, 2845864, 10418560, 37768970, 135153976, 477964329, 1676343822, 5852483376, 20403590238, 71080014610, 247360604490, 859493636214, 2980904955378, 10318666659192, 35656973487023, 123042978647274, 424121272321296
Offset: 7

Views

Author

Alois P. Heinz, Oct 15 2018

Keywords

Crossrefs

Column k=7 of A276727.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, 1,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(n=0, 1, `if`(k<2, k, b(n, 0, [0$(k-1)]))):
    a:= n-> (k-> A(n, k) -`if`(k=0, 0, A(n, k-1)))(7):
    seq(a(n), n=7..50);

Formula

a(n) = A276723(n) - A276722(n).
Showing 1-5 of 5 results.