cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A276748 G.f.: exp( Sum_{n>=1} [ Sum_{k>=1} k^(n^2) * x^(n*k) ] / n ), a power series in x with integer coefficients.

Original entry on oeis.org

1, 1, 3, 6, 20, 31, 278, 337, 17412, 24798, 6772374, 6838020, 11484638201, 11505059694, 80455953355044, 80659880546429, 2306084675313241000, 2306326405122809872, 268657126294137376567236, 268664044710902946519968, 126765866019584067600135507174, 126766706181193131138562011916, 241678197716027150352300025709078423, 241678578014230878979840920532089312, 1858396158247302094721803368957703312268486, 1858396883282148773045801834086535278817434
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2016

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 20*x^4 + 31*x^5 + 278*x^6 + 337*x^7 + 17412*x^8 + 24798*x^9 + 6772374*x^10 + 6838020*x^11 + 11484638201*x^12 +...
such that
log(A(x)) = Sum_{n>=1} (x^n + 2^(n^2)*x^(2*n) + 3^(n^2)*x^(3*n) +...+ k^(n^2)*x^(k*n) +...)/n.
The logarithm of g.f. A(x) equals the series:
log(A(x)) = Sum_{n>=1} (x^n + 2^(n^2)*x^(2*n) + 3^(n^2)*x^(3*n) +...+ k^(n^2)*x^(k*n) +...)/n.
This logarithmic series can be written using the Eulerian numbers like so:
log(A(x)) = x/(1-x)^2 + (x^2 + 11*x^4 + 11*x^6 + x^8)/(1-x^2)^5/2 + (x^3 + 502*x^6 + 14608*x^9 + 88234*x^12 + 156190*x^15 + 88234*x^18 + 14608*x^21 + 502*x^24 + x^27)/(1-x^3)^10/3 + (x^4 + 65519*x^8 + 41932745*x^12 + 3572085255*x^16 + 85383238549*x^20 + 782115518299*x^24 + 3207483178157*x^28 + 6382798925475*x^32 + 6382798925475*x^36 + 3207483178157*x^40 + 782115518299*x^44 + 85383238549*x^48 + 3572085255*x^52 + 41932745*x^56 + 65519*x^60 + x^64)/(1-x^4)^17/4 + (x^5 + 33554406*x^10 + 846416194536*x^15 + 1103881308184906*x^20 + 269025107855605626*x^25 + 21045399230106913746*x^30 + 695824003645512474376*x^35 + 11392907456028953400606*x^40 + 101955892318210543172751*x^45 + 531714261368950897339996*x^50 + 1685388700882132120106256*x^55 + 3334612565134607644610436*x^60 + 4179647109945703200884716*x^65 + 3334612565134607644610436*x^70 + 1685388700882132120106256*x^75 + 531714261368950897339996*x^80 + 101955892318210543172751*x^85 + 11392907456028953400606*x^90 + 695824003645512474376*x^95 + 21045399230106913746*x^100 + 269025107855605626*x^105 + 1103881308184906*x^110 + 846416194536*x^115 + 33554406*x^120 + x^125)/(1-x^5)^26/5 +...+ [Sum_{k=1..n^2} A008292(n^2,k) * x^(n*k)]/(1 - x^n)^(n^2+1)/n +...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( exp( sum(m=1, n+1, sum(k=1, n\m+1, k^(m^2) * x^(m*k) +x*O(x^n)) / m ) ), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {A008292(n, k) = sum(j=0, k, (-1)^j * (k-j)^n * binomial(n+1, j))}
    {a(n) = my(A=1, Oxn=x*O(x^n)); A = exp( sum(m=1, n+1, sum(k=1, min(m^2,n)+1, A008292(m^2, k)*x^(m*k)/(1-x^m +Oxn)^(m^2+1) ) / m ) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: exp( Sum_{n>=1} [ Sum_{k=1..n^2} A008292(n^2,k) * x^(n*k) ] / (1 - x^n)^(n^2+1) / n ), where A008292 are the Eulerian numbers.
Showing 1-1 of 1 results.