cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276758 Numbers n such that A045876(n) = A045876(n+1).

Original entry on oeis.org

10, 1010, 1100, 1119, 1339, 1519, 3139, 5119, 8899, 27799, 46699, 48499, 50559, 55059, 64699, 72799, 84499, 100110, 101010, 101100, 110010, 110100, 111000, 111229, 112129, 117799, 121129, 136699, 147499, 163699, 168199, 171799, 174499, 177199, 186199
Offset: 1

Views

Author

Altug Alkan, Sep 17 2016

Keywords

Comments

A138147 is a subsequence. Therefore, the sequence is infinite. - David A. Corneth, Sep 17 2016
Suppose a term is of the form SDN, where S is a sequence of digits without leading zeros, D is a digit less than 9 and N is a sequence of digits 9 (possibly 0 nines; terms from A002283) and SDN is a concatenation of S, D and N. Let S' be a permutation of digits of S without leading zeros. Then S'DN is also in the sequence. To search terms one may choose S from A179239. - David A. Corneth, Sep 18 2016
Since (n + 8*k) = (n - k + 1)*(n - k) has solutions that are n = k + 3*sqrt(k) and n = k - 3*sqrt(k), for square values of k there are infinitely many terms such that: 1119, 1111119999, 111111111999999999, ...

Examples

			1339 is a term because A045876(1339) = A045876(1340).
See 2nd comment. As 27799 is in the sequence, we can see S = 27, D = 7 and N = 99. Now all permutations S' (distinct) of S without leading zeros give terms. They are 72, giving term 72799. - _David A. Corneth_, Sep 18 2016
		

Crossrefs

Programs