cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276764 1^2 + 3^2, 2^2 + 4^2, 5^2 + 7^2, 6^2 + 8^2, ...

Original entry on oeis.org

10, 20, 74, 100, 202, 244, 394, 452, 650, 724, 970, 1060, 1354, 1460, 1802, 1924, 2314, 2452, 2890, 3044, 3530, 3700, 4234, 4420, 5002, 5204, 5834, 6052, 6730, 6964, 7690, 7940, 8714, 8980, 9802, 10084, 10954, 11252, 12170, 12484, 13450, 13780, 14794, 15140
Offset: 1

Views

Author

Edwin McCravy, Nov 06 2016

Keywords

Crossrefs

Cf. A001844.

Programs

  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{10,20,74,100,202},50] (* Harvey P. Dale, Mar 02 2023 *)
  • PARI
    Vec(2*x*(5+5*x+17*x^2+3*x^3+2*x^4) / ((1-x)^3*(1+x)^2) + O(x^60)) \\ Colin Barker, Nov 10 2016

Formula

a(n) = (2n - 1 - ((n+1) mod 2))^2 + (2n + (n mod 2))^2.
From Colin Barker, Nov 10 2016: (Start)
G.f.: 2*x*(5 + 5*x + 17*x^2 + 3*x^3 + 2*x^4) / ((1 - x)^3 * (1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>5.
a(n) = 8*n^2 - 8*n + 4 for n even.
a(n) = 8*n^2 + 2 for n odd.
(End)