A276767 Let A_n be the sequence defined in the same way as A159559 but with initial term prime(n), n>=2; a(n) is the smallest m such that for i>=2, A_n(i) - A_2(i) <= A_n(m) - A_2(m).
2, 5, 17, 17, 17, 359, 359, 359, 163, 163, 163, 163, 163, 163, 163, 163, 163, 448, 448, 448, 448, 448, 448, 71, 71, 71, 17, 17, 443, 443, 443, 443, 443, 443, 37, 37, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789, 2789
Offset: 2
Keywords
Examples
Let n=4. Set r(i)= A_4(i)- A_2(i), i>=2. Then, by the definition of A_4 and A_2, we have r(2)=7-3=4, r(3)=11-5=6, further, r(4)=...=r(12)=6, r(13)=r(14)=10, r(15)=r(16)=11, r(17)=r(18)=14, r(19)=...=r(22)=12, r(23)=...r(26)=10, r(27)=9, r(28)=8, r(29)=...=r(32)=6, r(33)=...=r(36)=7, r(37)=r(38)=8, r(39)=r(40)=7, r(41)=r(42)=4, r(43)=r(44)=2, r(45)=r(46)=1 r(n)=0, n>=47. So max r(i)=14 and the smallest m such that r(m)=14 is 17. Thus a(4)=17.
Extensions
More terms from Peter J. C. Moses, Sep 17 2016
Comments