cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276782 Where record values occur in A276781, when starting from A276781(2)=1.

Original entry on oeis.org

2, 6, 15, 22, 36, 58, 95, 96, 147, 148, 209, 210, 305, 306, 901, 902, 903, 904, 905, 906, 1149, 1150, 1353, 1354, 1355, 1356, 1357, 1358, 1359, 1360, 5621, 5622, 8499, 8500, 9585, 9586, 15719, 15720, 15721, 15722, 15723, 15724, 15725, 15726, 19653, 19654, 19655, 19656, 19657, 19658, 19659, 19660, 31449
Offset: 1

Views

Author

N. J. A. Sloane, Sep 29 2016

Keywords

Comments

Terms at the end of each run, that is, terms k that are not followed by k+1 (i.e., this excludes terms like 95, 147, 209, 901 .. 905, 1149, ...) form a subsequence of A181062. - Antti Karttunen, Jan 20 2020

Crossrefs

Programs

  • Maple
    A276781 := proc(n)
        local b,k;
        for b from 0 to floor(n/2+1) do
            igcd(seq(binomial(n,k),k=b..n-b)) ;
            if % > 1 then
                return b ;
            end if;
        end do:
    end proc:
    am := -1 ;
    for n from 2 do
        an := A276781(n) ;
        if an > am then
            printf("%d,\n",n) ;
            am := an ;
        end if;
    end do: # R. J. Mathar, Sep 30 2016
  • Mathematica
    Function[t, First@ Position[t, #] & /@ Range@ Max@ t][{0}~Join~Table[b = 1; While[GCD @@ Map[Binomial[n, #] &, Range[b, n - b]] == 1, b++]; b, {n, 2, 1500}]] // Flatten (* Michael De Vlieger, Oct 03 2016 *)
  • PARI
    A276781(n) = if(1==n,1,forstep(k=n,1,-1,if(isprimepower(k),return(1+n-k))));
    m=0; k=0; n=1; while(k<210,n++; if((t=A276781(n))>m, m=t; k++; print1(n, ", "))); \\ Antti Karttunen, Jan 29 2020

Extensions

a(11)-a(30) from R. J. Mathar, Sep 30 2016
More terms from Chai Wah Wu, Oct 02 2016
Definition amended because of the changed definition of A276781, while keeping the terms same as before. - Antti Karttunen, Jan 29 2020