cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A003145 Positions of letter b in the tribonacci word abacabaabacababac... generated by a->ab, b->ac, c->a (cf. A092782).

Original entry on oeis.org

2, 6, 9, 13, 15, 19, 22, 26, 30, 33, 37, 39, 43, 46, 50, 53, 57, 59, 63, 66, 70, 74, 77, 81, 83, 87, 90, 94, 96, 100, 103, 107, 111, 114, 118, 120, 124, 127, 131, 134, 138, 140, 144, 147, 151, 155, 158, 162, 164, 168, 171, 175, 179, 182, 186, 188, 192, 195, 199, 202, 206, 208
Offset: 1

Views

Author

Keywords

Comments

A003144, A003145, A003146 may be defined as follows. Consider the map psi: a -> ab, b -> ac, c -> a. The image (or trajectory) of a under repeated application of this map is the infinite word a, b, a, c, a, b, a, a, b, a, c, a, b, a, b, a, c, ... (setting a = 1, b = 2, c = 3 gives A092782). The indices of a, b, c give respectively A003144, A003145, A003146. - Philippe Deléham, Feb 27 2009
The infinite word may also be defined as the limit S_oo where S_1 = a, S_n = psi(S_{n-1}). Or, by S_1 = a, S_2 = ab, S_3 = abac, and thereafter S_n = S_{n-1} S_{n-2} S_{n-3}. It is the unique word such that S_oo = psi(S_oo).
Also indices of b in the sequence closed under a -> abac, b -> aba, c -> ab; starting with a(1) = a. - Philippe Deléham, Apr 16 2004
Theorem: A number m is in this sequence iff the tribonacci representation of m-1 ends with 01. [Duchene and Rigo, Remark 2.5] - N. J. A. Sloane, Mar 02 2019

References

  • Eric Duchêne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, Urban Larsson, Wythoff Visions, Games of No Chance, Vol. 5; MSRI Publications, Vol. 70 (2017), pages 101-153.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences give A276789. A278040 (subtract 1 from each term, and use offset 1).
For tribonacci representations of numbers see A278038.

Programs

  • Maple
    M:=17; S[1]:=`a`; S[2]:=`ab`; S[3]:=`abac`;
    for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:
    t0:=S[M]: l:=length(t0); t1:=[];
    for i from 1 to l do if substring(t0,i..i) = `b` then t1:=[op(t1),i]; fi; od: # N. J. A. Sloane
  • Mathematica
    StringPosition[SubstitutionSystem[{"a" -> "ab", "b" -> "ac", "c" -> "a"}, "b", {#}][[1]], "b"][[All, 1]] &@9 (* Michael De Vlieger, Mar 30 2017, Version 10.2, after JungHwan Min at A003144 *)

Formula

It appears that a(n) = floor(n*t^2) + eps for all n, where t is the tribonacci constant A058265 and eps is 0, 1, or 2. See A276799. - N. J. A. Sloane, Oct 28 2016. This is true - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019

Extensions

More terms from Philippe Deléham, Apr 16 2004
Corrected by T. D. Noe and N. J. A. Sloane, Nov 01 2006
Entry revised by N. J. A. Sloane, Oct 13 2016

A276800 Decimal expansion of t^2, where t is the tribonacci constant A058265.

Original entry on oeis.org

3, 3, 8, 2, 9, 7, 5, 7, 6, 7, 9, 0, 6, 2, 3, 7, 4, 9, 4, 1, 2, 2, 7, 0, 8, 5, 3, 6, 4, 5, 5, 0, 3, 4, 5, 8, 6, 9, 4, 9, 3, 8, 2, 0, 4, 3, 7, 4, 8, 5, 7, 6, 1, 8, 2, 0, 1, 9, 5, 6, 2, 6, 7, 7, 2, 3, 5, 3, 7, 1, 8, 9, 6, 0, 0, 9, 9, 4, 0, 2, 9, 2, 2, 2, 3, 5, 9, 3, 3, 3, 4, 0, 0, 4, 3, 6, 6, 1, 3, 9, 6, 0, 4, 1, 0, 0, 6
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2016

Keywords

Comments

The minimal polynomial of this constant is x^3 - 3*x^2 - x - 1, and it is its unique real root. - Amiram Eldar, May 27 2023

Examples

			3.38297576790623749412270853645503458694938204374857618201956267723537...
		

Crossrefs

Programs

  • Mathematica
    A276800L[n_] := RealDigits[(1/3 (1 + (19 - 3 Sqrt[33])^(1/3) + (19 + 3 Sqrt[33])^(1/3)))^2, 10, n][[1]]; A276800L[107] (* JungHwan Min, Nov 06 2016 *)
    RealDigits[x /. FindRoot[x^3 - 3*x^2 - x - 1, {x, 3}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, May 27 2023 *)
  • PARI
    polrootsreal(x^3-3*x^2-x-1)[1] \\ Charles R Greathouse IV, Aug 21 2023

A277724 Intersection of A158919 and A277722.

Original entry on oeis.org

0, 3, 16, 20, 23, 27, 33, 40, 47, 57, 60, 64, 71, 77, 84, 91, 101, 104, 108, 115, 121, 125, 128, 145, 148, 152, 158, 165, 169, 172, 182, 189, 196, 202, 206, 209, 213, 226, 233, 240, 246, 250, 253, 257, 263, 270, 274, 277, 290, 294, 297, 301, 307, 314, 321, 331, 334, 338, 345, 351, 358, 375, 378, 382
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2016

Keywords

Comments

See A277728 for discussion.

Crossrefs

A277725 Intersection of A158919 and A277723.

Original entry on oeis.org

0, 12, 18, 31, 49, 62, 68, 80, 93, 99, 112, 130, 136, 143, 161, 174, 180, 211, 217, 224, 242, 248, 255, 261, 286, 292, 323, 329, 336, 342, 354, 360, 367, 373, 404, 410, 423, 435, 441, 448, 454, 472, 485, 491, 516, 522, 535, 553, 560, 566, 572, 584, 597, 603, 616, 634, 640, 647, 665, 678, 684, 709, 715
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2016

Keywords

Comments

See A277728 for discussion.

Crossrefs

A277726 Intersection of A277722 and A277723.

Original entry on oeis.org

0, 6, 37, 43, 74, 87, 118, 155, 186, 192, 199, 230, 236, 267, 280, 304, 311, 317, 348, 385, 392, 416, 429, 460, 466, 497, 504, 510, 541, 578, 622, 659, 690, 696, 703, 734, 740, 771, 784, 808, 815, 852, 889, 896, 920, 933, 964, 970, 1001, 1008, 1014, 1045, 1082, 1126, 1163, 1194, 1200, 1207, 1238, 1244, 1275, 1288, 1312, 1319, 1356, 1387, 1393, 1400, 1424
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2016

Keywords

Comments

See A277728 for discussion.

Crossrefs

Programs

  • Maple
    Digits := 120;
    isA277722 := proc(n)
        a276800 :=  3.3829757679062374941227085364550345869493820437485761820195626772353718960099402922235933340043661396041006 ;
        for x from floor((n-3)/a276800) to (n+3)/a276800 do
            if floor(x*a276800) = n then
                return true;
            end if;
        end do:
        return false;
    end proc:
    isA277723 := proc(n)
        a276801 :=  6.2222625231203986266745611011083211873735607898461684287983213166395751180919067179620287534326731537460804;
        for x from floor((n-3)/a276801) to (n+3)/a276801 do
            if floor(x*a276801) = n then
                return true;
            end if;
        end do:
        return false;
    end proc:
    isA277726 := proc(n)
        isA277722(n) and isA277723(n) ;
    end proc:
    for n from 0 to 8000 do
        if isA277726(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Nov 02 2016

Extensions

Corrected by R. J. Mathar, Nov 01 2016

A277727 Union of A158919, A277722, A277723.

Original entry on oeis.org

0, 1, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 23, 24, 25, 27, 29, 30, 31, 33, 34, 36, 37, 38, 40, 42, 43, 44, 45, 47, 49, 50, 51, 53, 54, 55, 56, 57, 58, 60, 62, 64, 66, 67, 68, 69, 71, 73, 74, 75, 77, 79, 80, 81, 82, 84, 86, 87, 88, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 104, 105, 106
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2016

Keywords

Comments

See A277728 for discussion.

Crossrefs

A277721 a(n) = floor(n*t^3) - A003146(n), where t = 1.8392867... is the tribonacci constant A058265.

Original entry on oeis.org

2, 1, 1, 0, 3, 2, 2, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 2, 2, 1, 0, 1, 0, 2, 1, 2, 1, 3, 2, 2, 2, 1, 1, 0, 3, 2, 2, 1, 1, 1, 3, 2, 2, 2, 1, 1, 0, 2, 2, 2, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 2, 2, 1, 0, 0, 0, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 0, 2, 2, 2, 1, 1, 0, 3, 2, 2, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 2
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2016

Keywords

Comments

Always in the set {-1,0,1,2,3}, but first occurrence of -1 is at n = 2047. - Jeffrey Shallit, Nov 19 2016

Crossrefs

Showing 1-7 of 7 results.