cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276801 Decimal expansion of t^3, where t is the tribonacci constant A058265.

Original entry on oeis.org

6, 2, 2, 2, 2, 6, 2, 5, 2, 3, 1, 2, 0, 3, 9, 8, 6, 2, 6, 6, 7, 4, 5, 6, 1, 1, 0, 1, 1, 0, 8, 3, 2, 1, 1, 8, 7, 3, 7, 3, 5, 6, 0, 7, 8, 9, 8, 4, 6, 1, 6, 8, 4, 2, 8, 7, 9, 8, 3, 2, 1, 3, 1, 6, 6, 3, 9, 5, 7, 5, 1, 1, 8, 0, 9, 1, 9, 0, 6, 7, 1, 7, 9, 6, 2, 0, 2, 8, 7, 5, 3, 4, 3, 2, 6, 7, 3, 1, 5, 3, 7, 4, 6, 0, 8, 0, 4
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2016

Keywords

Comments

A cubic integer with minimal polynomial x^3 - 7x^2 + 5x - 1, of which it is the unique real root. - Charles R Greathouse IV, Nov 06 2016

Examples

			6.222262523120398626674561101108321187373560789846168428798321316639575...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[x^3 - 7*x^2 + 5*x - 1, {x, 6}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, May 27 2023 *)
  • PARI
    polrootsreal(x^3-7*x^2+5*x-1)[1] \\ Charles R Greathouse IV, Nov 06 2016

Formula

1/t + 1/t^2 + 1/t^3 = 1/A058265 + 1/A276800 + 1/A276801 = 1.
From Dimitri Papadopoulos, Nov 07 2023: (Start)
t^3 = (A276800^2 + 1)/2.
t^3 + 1/t^3 = t + 1/t + 4.
t^3 = (1/4)*(t + 1)^2*(t - 1)^2*(t^2 + 1). (End)