cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A058265 Decimal expansion of the tribonacci constant t, the real root of x^3 - x^2 - x - 1.

Original entry on oeis.org

1, 8, 3, 9, 2, 8, 6, 7, 5, 5, 2, 1, 4, 1, 6, 1, 1, 3, 2, 5, 5, 1, 8, 5, 2, 5, 6, 4, 6, 5, 3, 2, 8, 6, 6, 0, 0, 4, 2, 4, 1, 7, 8, 7, 4, 6, 0, 9, 7, 5, 9, 2, 2, 4, 6, 7, 7, 8, 7, 5, 8, 6, 3, 9, 4, 0, 4, 2, 0, 3, 2, 2, 2, 0, 8, 1, 9, 6, 6, 4, 2, 5, 7, 3, 8, 4, 3, 5, 4, 1, 9, 4, 2, 8, 3, 0, 7, 0, 1, 4
Offset: 1

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Comments

"The tribonacci constant, the only real solution to the equation x^3 - x^2 - x - 1 = 0, which is related to tribonacci sequences (in which U_n = U_n-1 + U_n-2 + U_n-3) as the Golden Ratio is related to the Fibonacci sequence and its generalizations. This ratio also appears when a snub cube is inscribed in an octahedron or a cube, by analogy once again with the appearance of the Golden Ratio when an icosahedron is inscribed in an octahedron. [John Sharp, 1997]"
The tribonacci constant corresponds to the Golden Section in a tripartite division 1 = u_1 + u_2 + u_3 of a unit line segment; i.e., if 1/u_1 = u_1/u_2 = u_2/u_3 = c, c is the tribonacci constant. - Seppo Mustonen, Apr 19 2005
The other two polynomial roots are the complex-conjugated pair -0.4196433776070805662759262... +- i* 0.60629072920719936925934... - R. J. Mathar, Oct 25 2008
For n >= 3, round(q^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. - Vladimir Shevelev, Mar 21 2014
Concerning orthogonal projections, the tribonacci constant is the ratio of the diagonal of a square to the width of a rhombus projected by rotating a square along its diagonal in 3D until the angle of rotation equals the apparent apex angle at approximately 57.065 degrees (also the corresponding angle in the formula generating A256099). See illustration in the links. - Peter M. Chema, Jan 02 2017
From Wolfdieter Lang, Aug 10 2018: (Start)
Real eigenvalue t of the tribonacci Q-matrix <<1, 1, 1>,<1, 0, 0>,<0, 1, 0>>.
Limit_{n -> oo} T(n+1)/T(n) = t (from the T recurrence), where T = {A000073(n+2)}_{n >= 0}. (End)
The nonnegative powers of t are t^n = T(n)*t^2 + (T(n-1) + T(n-2))*t + T(n-1)*1, for n >= 0, with T(n) = A000073(n), with T(-1) = 1 and T(-2) = -1, This follows from the recurrences derived from t^3 = t^2 + t + 1. See the examples below. For the negative powers see A319200. - Wolfdieter Lang, Oct 23 2018
Note that we have: t + t^(-3) = 2, and the k-nacci constant approaches 2 when k approaches infinity (Martin Gardner). - Bernard Schott, May 16 2022
The roots of this cubic are found from those of y^3 - (4/3)*y - 38/27, after adding 1/3. - Wolfdieter Lang, Aug 24 2022
The algebraic number t - 1 has minimal polynomial x^3 + 2*x^2 - 2 over Q. The roots coincide with those of y^3 - (4/3)*y - 38/27, after subtracting 2/3. - Wolfdieter Lang, Sep 20 2022
The value of the ratio R/r of the radius R of a uniform ball to the radius r of a spherical hole in it with a common point of contact, such that the center of gravity of the object lies on the surface of the spherical hole (Schmidt, 2002). - Amiram Eldar, May 20 2023

Examples

			1.8392867552141611325518525646532866004241787460975922467787586394042032220\
    81966425738435419428307014141979826859240974164178450746507436943831545\
    820499513796249655539644613666121540277972678118941041...
From _Wolfdieter Lang_, Oct 23 2018: (Start)
The coefficients of t^2, t, 1 for t^n begin, for n >= 0:
    n     t^2    t    1
    -------------------
    0      0     0    1
    1      0     1    0
    2      1     0    0
    1      1     1    1
    4      2     2    1
    5      4     3    2
    6      7     6    4
    7     13    11    7
    8     24    20   13
    9     44    37   24
   10     81    68   44
...  (End)
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
  • Martin Gardner, The Second Scientific American Book of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.

Crossrefs

Cf. A000073, A019712 (continued fraction), A133400, A254231, A158919 (spectrum = floor(n*t)), A357101 (x^3-2*x^2-2).
Cf. A192918 (reciprocal), A276800 (square), A276801 (cube), A319200.
k-nacci constants: A001622 (Fibonacci), this sequence (tribonacci), A086088 (tetranacci), A103814 (pentanacci), A118427 (hexanacci), A118428 (heptanacci).

Programs

  • Maple
    Digits:=200; fsolve(x^3=x^2+x+1); # N. J. A. Sloane, Mar 16 2019
  • Mathematica
    RealDigits[ N[ 1/3 + 1/3*(19 - 3*Sqrt[33])^(1/3) + 1/3*(19 + 3*Sqrt[33])^(1/3), 100]] [[1]]
    RealDigits[Root[x^3-x^2-x-1,1],10,120][[1]] (* Harvey P. Dale, Mar 23 2019 *)
  • Maxima
    set_display(none)$ fpprec:100$ bfloat(rhs(solve(t^3-t^2-t-1,t)[3])); /* Dimitri Papadopoulos, Nov 09 2023 */
  • PARI
    default(realprecision, 20080); x=solve(x=1, 2, x^3 - x^2 - x - 1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b058265.txt", n, " ", d));  \\ Harry J. Smith, May 30 2009
    
  • PARI
    q=(1+sqrtn(19+3*sqrt(33),3)+sqrtn(19-3*sqrt(33),3))/3 \\ Use \p# to set 'realprecision'. - M. F. Hasler, Mar 23 2014
    

Formula

t = (1/3)*(1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3)). - Zak Seidov, Jun 08 2005
t = 1 - Sum_{k>=1} A057597(k+2)/(T_k*T_(k+1)), where T_n = A000073(n+1). - Vladimir Shevelev, Mar 02 2013
1/t + 1/t^2 + 1/t^3 = 1/A058265 + 1/A276800 + 1/A276801 = 1. - N. J. A. Sloane, Oct 28 2016
t = (4/3)*cosh((1/3)*arccosh(19/8)) + 1/3. - Wolfdieter Lang, Aug 24 2022
t = 2 - Sum_{k>=0} binomial(4*k + 2, k)/((k + 1)*2^(4*k + 3)). - Antonio Graciá Llorente, Oct 28 2024

A003146 Positions of letter c in the tribonacci word abacabaabacababac... generated by a->ab, b->ac, c->a (cf. A092782).

Original entry on oeis.org

4, 11, 17, 24, 28, 35, 41, 48, 55, 61, 68, 72, 79, 85, 92, 98, 105, 109, 116, 122, 129, 136, 142, 149, 153, 160, 166, 173, 177, 184, 190, 197, 204, 210, 217, 221, 228, 234, 241, 247, 254, 258, 265, 271, 278, 285, 291, 298, 302, 309, 315, 322, 329, 335, 342, 346, 353, 359
Offset: 1

Views

Author

Keywords

Comments

Comment from Philippe Deléham, Feb 27 2009: A003144, A003145, A003146 may be defined as follows. Consider the map psi: a -> ab, b -> ac, c -> a. The image (or trajectory) of a under repeated application of this map is the infinite word a, b, a, c, a, b, a, a, b, a, c, a, b, a, b, a, c, ... (setting a = 1, b = 2, c = 3 gives A092782). The indices of a, b, c give respectively A003144, A003145, A003146.
The infinite word may also be defined as the limit S_oo where S_1 = a, S_n = psi(S_{n-1}). Or, by S_1 = a, S_2 = ab, S_3 = abac, and thereafter S_n = S_{n-1} S_{n-2} S_{n-3}. It is the unique word such that S_oo = psi(S_oo).
Also, indices of c in the sequence closed under a -> abac, b -> aba, c -> ab; starting with a(1) = a. - Philippe Deléham, Apr 16 2004
Theorem: A number m is in this sequence iff the tribonacci representation of m-1 ends with 11. [Duchene and Rigo, Remark 2.5] - N. J. A. Sloane, Mar 02 2019

References

  • Eric Duchêne, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, Urban Larsson, Wythoff Visions, Games of No Chance, Vol. 5; MSRI Publications, Vol. 70 (2017), pages 101-153.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are A276792. A278041 (subtract 1 from each term, and use offset 0).
For tribonacci representations of numbers see A278038.

Programs

  • Maple
    M:=17; S[1]:=`a`; S[2]:=`ab`; S[3]:=`abac`;
    for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:
    t0:=S[M]: l:=length(t0); t1:=[];
    for i from 1 to l do if substring(t0,i..i) = `c` then t1:=[op(t1),i]; fi; od:
    # N. J. A. Sloane, Nov 01 2006
  • Mathematica
    StringPosition[SubstitutionSystem[{"a" -> "ab", "b" -> "ac", "c" -> "a"}, "c", {#}][[1]], "c"][[All, 1]] &@ 11 (* Michael De Vlieger, Mar 30 2017, Version 10.2, after JungHwan Min at A003144 *)

Formula

It appears that a(n) = floor(n*t^3) + eps for all n, where t is the tribonacci constant A058265 and eps is 0, 1, 2, or 3. See A277721. - N. J. A. Sloane, Oct 28 2016. This is true - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019

Extensions

More terms from Philippe Deléham, Apr 16 2004
Entry revised by N. J. A. Sloane, Oct 13 2016

A276800 Decimal expansion of t^2, where t is the tribonacci constant A058265.

Original entry on oeis.org

3, 3, 8, 2, 9, 7, 5, 7, 6, 7, 9, 0, 6, 2, 3, 7, 4, 9, 4, 1, 2, 2, 7, 0, 8, 5, 3, 6, 4, 5, 5, 0, 3, 4, 5, 8, 6, 9, 4, 9, 3, 8, 2, 0, 4, 3, 7, 4, 8, 5, 7, 6, 1, 8, 2, 0, 1, 9, 5, 6, 2, 6, 7, 7, 2, 3, 5, 3, 7, 1, 8, 9, 6, 0, 0, 9, 9, 4, 0, 2, 9, 2, 2, 2, 3, 5, 9, 3, 3, 3, 4, 0, 0, 4, 3, 6, 6, 1, 3, 9, 6, 0, 4, 1, 0, 0, 6
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2016

Keywords

Comments

The minimal polynomial of this constant is x^3 - 3*x^2 - x - 1, and it is its unique real root. - Amiram Eldar, May 27 2023

Examples

			3.38297576790623749412270853645503458694938204374857618201956267723537...
		

Crossrefs

Programs

  • Mathematica
    A276800L[n_] := RealDigits[(1/3 (1 + (19 - 3 Sqrt[33])^(1/3) + (19 + 3 Sqrt[33])^(1/3)))^2, 10, n][[1]]; A276800L[107] (* JungHwan Min, Nov 06 2016 *)
    RealDigits[x /. FindRoot[x^3 - 3*x^2 - x - 1, {x, 3}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, May 27 2023 *)
  • PARI
    polrootsreal(x^3-3*x^2-x-1)[1] \\ Charles R Greathouse IV, Aug 21 2023

A277723 a(n) = floor(n*tau^3) where tau is the tribonacci constant (A058265).

Original entry on oeis.org

0, 6, 12, 18, 24, 31, 37, 43, 49, 56, 62, 68, 74, 80, 87, 93, 99, 105, 112, 118, 124, 130, 136, 143, 149, 155, 161, 168, 174, 180, 186, 192, 199, 205, 211, 217, 224, 230, 236, 242, 248, 255, 261, 267, 273, 280, 286, 292, 298, 304, 311, 317, 323, 329, 336, 342, 348, 354, 360, 367, 373, 379, 385
Offset: 0

Views

Author

N. J. A. Sloane, Oct 30 2016

Keywords

Crossrefs

Programs

Formula

By definition, a(n) = n*tau^3 + O(1). - Charles R Greathouse IV, Nov 06 2016

A286998 0-limiting word of the morphism 0->10, 1->20, 2->0.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0
Offset: 1

Views

Author

Clark Kimberling, May 22 2017

Keywords

Comments

Starting with 0, the first 5 iterations of the morphism yield words shown here:
1st: 10
2nd: 2010
3rd: 0102010
4th: 1020100102010
5th: 201001020101020100102010
The 2-limiting word is the limit of the words for which the number of iterations is congruent to 2 mod 3.
Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively. Then 1/U + 1/V + 1/W = 1, where
U = 1.8392867552141611325518525646532866..., (A058265)
V = U^2 = 3.3829757679062374941227085364..., (A276800)
W = U^3 = 6.2222625231203986266745611011.... (A276801)
If n >=2, then u(n) - u(n-1) is in {1,2}, v(n) - v(n-1) is in {2,3,4}, and w(n) - w(n-1) is in {4,6,7}.
From Jiri Hladky, Aug 29 2021: (Start)
This is also Arnoux-Rauzy word sigma_0 x sigma_1 x sigma_2, where sigmas are defined as:
sigma_0 : 0 -> 0, 1 -> 10, 2 -> 20;
sigma_1 : 0 -> 01, 1 -> 1, 2 -> 21;
sigma_2 : 0 -> 02, 1 -> 12, 2 -> 2.
Fixed point of the morphism 0->0102010, 1->102010, 2->2010, starting from a(1)=0. This definition has the benefit that EACH iteration yields the prefix of the limiting word.
Frequency of letters:
0: 1/t ~ 54.368% (A192918)
1: 1/t^2 ~ 29.559%
2: 1/t^3 ~ 16.071%
where t is tribonacci constant A058265.
Equals A347290 with a re-mapping of values 1->2, 2->1.
(End)

Examples

			3rd iterate: 0102010
6th iterate: 01020101020100102010201001020101020100102010
		

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {2, 0}, 2 -> 0}] &, {0}, 9] (* A286998 *)
    Flatten[Position[s, 0]] (* A286999 *)
    Flatten[Position[s, 1]] (* A287000 *)
    Flatten[Position[s, 2]] (* A287001 *)
    (* Using the 0->0102010, 1->102010, 2->2010 rule: *)
    Nest[ Flatten[# /. {0 -> {0, 1, 0, 2, 0, 1, 0}, 1 -> {1, 0, 2, 0, 1, 0}, 2 -> {2, 0, 1, 0}}] &, {0}, 3]

A277726 Intersection of A277722 and A277723.

Original entry on oeis.org

0, 6, 37, 43, 74, 87, 118, 155, 186, 192, 199, 230, 236, 267, 280, 304, 311, 317, 348, 385, 392, 416, 429, 460, 466, 497, 504, 510, 541, 578, 622, 659, 690, 696, 703, 734, 740, 771, 784, 808, 815, 852, 889, 896, 920, 933, 964, 970, 1001, 1008, 1014, 1045, 1082, 1126, 1163, 1194, 1200, 1207, 1238, 1244, 1275, 1288, 1312, 1319, 1356, 1387, 1393, 1400, 1424
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2016

Keywords

Comments

See A277728 for discussion.

Crossrefs

Programs

  • Maple
    Digits := 120;
    isA277722 := proc(n)
        a276800 :=  3.3829757679062374941227085364550345869493820437485761820195626772353718960099402922235933340043661396041006 ;
        for x from floor((n-3)/a276800) to (n+3)/a276800 do
            if floor(x*a276800) = n then
                return true;
            end if;
        end do:
        return false;
    end proc:
    isA277723 := proc(n)
        a276801 :=  6.2222625231203986266745611011083211873735607898461684287983213166395751180919067179620287534326731537460804;
        for x from floor((n-3)/a276801) to (n+3)/a276801 do
            if floor(x*a276801) = n then
                return true;
            end if;
        end do:
        return false;
    end proc:
    isA277726 := proc(n)
        isA277722(n) and isA277723(n) ;
    end proc:
    for n from 0 to 8000 do
        if isA277726(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Nov 02 2016

Extensions

Corrected by R. J. Mathar, Nov 01 2016

A277735 Unique fixed point of the morphism 0 -> 01, 1 -> 20, 2 -> 0.

Original entry on oeis.org

0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1
Offset: 1

Views

Author

N. J. A. Sloane, Nov 07 2016

Keywords

Comments

From Clark Kimberling, May 21 2017: (Start)
Let u be the sequence of positions of 0, and likewise, v for 1 and w for 2. Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively. Then 1/U + 1/V + 1/W = 1, where
U = 1.8392867552141611325518525646532866...,
V = U^2 = 3.3829757679062374941227085364...,
W = U^3 = 6.2222625231203986266745611011....
If n >=2, then u(n) - u(n-1) is in {1,2,3}, v(n) - v(n-1) is in {2,4,5}, and w(n) - w(n-1) is in {4,7,9}. (u = A277736, v = A277737, w = A277738). (End)
Although I believe the assertions in Kimberling's comment above to be correct, these results are quite tricky to prove, and unless a formal proof is supplied at present these assertions must be regarded as conjectures. - N. J. A. Sloane, Aug 20 2018
From Michel Dekking, Oct 03 2019: (Start)
Here is a proof of Clark Kimberling's conjectures (and more).
The incidence matrix of the defining morphism
sigma: 0 -> 01, 1 -> 20, 2 -> 0
is the same as the incidence matrix of the tribonacci morphism
0 -> 01, 1 -> 02, 2 -> 0
(see A080843 and/or A092782).
This implies that the frequencies f0, f1 and f2 of the letters 0,1, and 2 in (a(n)) are the same as the corresponding frequencies in the tribonacci word, which are 1/t, 1/t^2 and 1/t^3 (see, e.g., A092782).
Since U = 1/f0, V = 1/f1, and W = 1/f2, we conclude that
U = t = A058265, V = t^2 = A276800 and W = t^3 = A276801.
The statements on the difference sequences u, v, and w of the positions of 0,1, and 2 are easily verified by applying sigma to the return words of these three letters.
Here the return words of an arbitrary word w in a sequence x are all the words occurring in x with prefix w that do not have other occurrences of w in them.
The return words of 0 are 0, 01, and 012, which indeed have length 1, 2
and 3. Since
sigma(0) = 01, sigma(1) = 0120, and sigma(012) = 01200,
one sees that u is the unique fixed point of the morphism
1 -> 2, 2-> 31, 3 ->311.
With a little more work, passing to sigma^2, and rotating, one can show that v is the unique fixed point of the morphism
2->52, 4->5224, 5->52244 .
Similarly, w is the unique fixed point of the morphism
4->94, 7->9447, 9->94477.
Interestingly, the three morphisms having u,v, and w as fixed point are essentially the same morphism (were we replaced sigma by sigma^2) with standard form
1->12, 2->1223, 3->12233.
(End)
The kind of phenomenon observed at the end of the previous comment holds in a very strong way for the tribonacci word. See Theorem 5.1. in the paper by Huang and Wen. - Michel Dekking, Oct 04 2019

Crossrefs

Equals A100619(n)-1.

Programs

  • Maple
    with(ListTools);
    T:=proc(S) Flatten(subs( {0=[0,1], 1=[2,0], 2=[0]}, S)); end;
    S:=[0];
    for n from 1 to 10 do S:=T(S); od:
    S;
  • Mathematica
    s = Nest[Flatten[# /. {0 -> {0, 1}, 1 -> {2, 0}, 2 -> 0}] &, {0}, 10] (* A277735 *)
    Flatten[Position[s, 0]] (* A277736 *)
    Flatten[Position[s, 1]] (* A277737 *)
    Flatten[Position[s, 2]] (* A277738 *)
    (* Clark Kimberling, May 21 2017 *)

Extensions

Name clarified by Michel Dekking, Oct 03 2019

A287112 1-limiting word of the morphism 0->10, 1->20, 2->0.

Original entry on oeis.org

1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0
Offset: 1

Views

Author

Clark Kimberling, May 22 2017

Keywords

Comments

Starting with 0, the first 4 iterations of the morphism yield words shown here:
1st: 10
2nd: 2010
3rd: 0102010
4th: 1020100102010
The 1-limiting word is the limit of the words for which the number of iterations is congruent to 1 mod 3.
Let U, V, W be the limits of u(n)/n, v(n)/n, w(n)/n, respectively. Then 1/U + 1/V + 1/W = 1, where
U = 1.8392867552141611325518525646532866...,
V = U^2 = 3.3829757679062374941227085364...,
W = U^3 = 6.2222625231203986266745611011....
If n >=2, then u(n) - u(n-1) is in {1,2}, v(n) - v(n-1) is in {2,3,4}, and w(n) - w(n-1) is in {4,6,7}.
From Michel Dekking, Mar 29 2019: (Start)
This sequence is one of the three fixed points of the morphism alpha^3, where alpha is the defining morphism
0->10, 1->20, 2->0.
The other two fixed points are A286998 and A287174.
We have alpha = rho(tau), where tau is the tribonacci morphism in A080843
0->01, 1->02, 2->0,
and rho is the rotation operator.
An eigenvector computation of the incidence matrix of the morphism gives that 0,1, and 2 have frequencies 1/t, 1/t^2 and 1/t^3, where t is the tribonacci constant A058265.
Apparently (u(n)) := A287113. Thus U, the limit of u(n)/n, equals 1/(1/t), the tribonacci constant t. Also, V = A276800, and W = A276801.
(End)

Examples

			1st iterate: 10
4th iterate: 1020100102010
7th iterate:  102010010201020100102010102010010201001020101020100102010201001020101020100102010.
		

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {2, 0}, 2 -> 0}] &, {0}, 10]   (* A287112 *)
    Flatten[Position[s, 0]] (* A287113 *)
    Flatten[Position[s, 1]] (* A287114 *)
    Flatten[Position[s, 2]] (* A287115 *)

A277721 a(n) = floor(n*t^3) - A003146(n), where t = 1.8392867... is the tribonacci constant A058265.

Original entry on oeis.org

2, 1, 1, 0, 3, 2, 2, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 2, 2, 1, 0, 1, 0, 2, 1, 2, 1, 3, 2, 2, 2, 1, 1, 0, 3, 2, 2, 1, 1, 1, 3, 2, 2, 2, 1, 1, 0, 2, 2, 2, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 2, 2, 1, 0, 0, 0, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 0, 2, 2, 2, 1, 1, 0, 3, 2, 2, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 2
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2016

Keywords

Comments

Always in the set {-1,0,1,2,3}, but first occurrence of -1 is at n = 2047. - Jeffrey Shallit, Nov 19 2016

Crossrefs

A316711 Decimal expansion of s:= t/(t - 1), with the tribonacci constant t = A058265.

Original entry on oeis.org

2, 1, 9, 1, 4, 8, 7, 8, 8, 3, 9, 5, 3, 1, 1, 8, 7, 4, 7, 0, 6, 1, 3, 5, 4, 2, 6, 8, 2, 2, 7, 5, 1, 7, 2, 9, 3, 4, 7, 4, 6, 9, 1, 0, 2, 1, 8, 7, 4, 2, 8, 8, 0, 9, 1, 0, 0, 9, 7, 8, 1, 3, 3, 8, 6, 1, 7, 6, 8, 5, 9, 4, 8, 0, 0, 4, 9, 7, 0, 1, 4, 6, 1, 1, 1, 7, 9, 6, 6, 6, 7, 0, 0, 2, 1, 8, 3, 0, 6
Offset: 1

Views

Author

Wolfdieter Lang, Sep 07 2018

Keywords

Comments

Because the tribonacci constant t = A058265 > 1, with Beatty sequence At(n) := floor(n*t), n >= 1 (with At(0) = 0) given in A158919, has the companion sequence Bt := floor(n*s), n >= 1, (with Bt(0) = 0), with 1/t + 1/s = 1, and At and Bt are complementary, disjoint sequences for the positive integers. Note that Bt is not A172278. The first entries n = 0..161 coincide. A172278(162) = 354 but At(193) = A158919(193) = 354, hence A172278 is not complementary together with At. In fact, Bt(162) = 355, which is not a member of At.
s-1 = 1/(t-1) equals the real root of 2*x^3 - 2*x - 1. See the formulas below. - Wolfdieter Lang, Sep 15 2022

Examples

			s = 2.191487883953118747061354268227517293474691021874288091009781338617685...
		

Crossrefs

Programs

  • Maple
    Digits := 120: a := (1/4 + sqrt(33)/36)^(1/3): 1 + a + 1/(3*a): evalf(%)*10^98: ListTools:-Reverse(convert(floor(%), base, 10)); # Peter Luschny, Sep 15 2022
  • Mathematica
    With[{t=x/.Solve[x^3-x^2-x-1==0,x][[1]]},RealDigits[t/(t-1),10,120][[1]]] (* Harvey P. Dale, Sep 12 2021 *)

Formula

s = t/(t - 1) with the tribonacci constant t = A058265, the real root of the cubic x^3 - x^2 - x - 1.
s = (1 + (19 + 3*sqrt(33))^(1/3) + (19 - 3*sqrt(33))^(1/3)) / (-2 + (19 + 3*sqrt(33))^(1/3) + (19 - 3*sqrt(33))^(1/3)).
From Wolfdieter Lang, Sep 15 2022: (Start)
s = 1 + ((1 + (1/9)*sqrt(33))/4)^(1/3)+(1/3)*((1 + (1/9)*sqrt(33))/4)^(-1/3).
s = 1 + ((1 + (1/9)*sqrt(33))/4)^(1/3) + ((1 - (1/9)*sqrt(33))/4)^(1/3).
s = 1 + (2/3)*sqrt(3)*cosh((1/3)*arccosh((3/4)*sqrt(3))). (End)
From Dimitri Papadopoulos, Nov 07 2023: (Start)
s = 1 + t^3/(t^3 - 1) = 1 + A276801/(A276801 - 1).
s = 1 + t^2/(t+1). (End)
Showing 1-10 of 11 results. Next