cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276805 a(n) = numerator((n^2 + 3*n + 2)/n^3).

Original entry on oeis.org

6, 3, 20, 15, 42, 7, 72, 45, 110, 33, 156, 91, 210, 30, 272, 153, 342, 95, 420, 231, 506, 69, 600, 325, 702, 189, 812, 435, 930, 124, 1056, 561, 1190, 315, 1332, 703, 1482, 195, 1640, 861, 1806, 473, 1980, 1035, 2162, 282, 2352, 1225, 2550, 663, 2756, 1431, 2970, 385
Offset: 1

Views

Author

Keywords

Examples

			a(1) = numerator((n^2 + 3*n + 2)/n^3)  = 1^2+3*1+2/1^3 = 6.
		

Crossrefs

Cf. A277542.

Programs

  • Mathematica
    Table[Numerator[(n^2 + 3*n + 2)/n^3], {n, 1, 100}]
  • PARI
    a(n) = numerator((n^2 + 3*n + 2)/n^3); \\ Michel Marcus, Sep 18 2016
    
  • PARI
    Vec(x*(6 +3*x +20*x^2 +15*x^3 +42*x^4 +7*x^5 +72*x^6 +45*x^7 +92*x^8 +24*x^9 +96*x^10 +46*x^11 +84*x^12 +9*x^13 +56*x^14 +18*x^15 +30*x^16 +5*x^17 +12*x^18 +3*x^19 +2*x^20 +x^23) / ((1 -x)^3*(1 +x)^3*(1 +x^2)^3*(1 +x^4)^3) + O(x^100)) \\ Colin Barker, Oct 20 2016

Formula

From Colin Barker, Sep 18 2016: (Start)
a(n) = 3*a(n-8)-3*a(n-16)+a(n-24) for n>24.
G.f.: x*(6 +3*x +20*x^2 +15*x^3 +42*x^4 +7*x^5 +72*x^6 +45*x^7 +92*x^8 +24*x^9 +96*x^10 +46*x^11 +84*x^12 +9*x^13 +56*x^14 +18*x^15 +30*x^16 +5*x^17 +12*x^18 +3*x^19 +2*x^20 +x^23) / ((1 -x)^3*(1 +x)^3*(1 +x^2)^3*(1 +x^4)^3).
(End)
a(n) = a(n-8)*(n^2+3*n+2)/(n^2-13*n+42), for n>8. - Gionata Neri, Feb 25 2017