A276812 Prime gap residues mod previous prime gap.
0, 0, 0, 2, 0, 2, 0, 2, 2, 0, 4, 2, 0, 2, 0, 2, 0, 4, 2, 0, 4, 2, 2, 4, 2, 0, 2, 0, 2, 4, 2, 2, 0, 2, 0, 0, 4, 2, 0, 2, 0, 2, 0, 2, 0, 0, 4, 2, 0, 2, 2, 0, 6, 0, 0, 2, 0, 4, 2, 0, 4, 4, 2, 0, 2, 6, 4, 2, 0, 2, 2, 6, 0, 4, 2, 2, 4, 0, 2, 2, 0, 2, 0, 4, 2, 2, 4, 2, 0, 0, 8, 4, 0, 4, 2, 0, 2, 0, 6, 4
Offset: 1
Keywords
Examples
For n = 4: prime(4+2) = 13, prime(4+1) = 11 and prime(4) = 7. (13-11) % (11-7) = 2 % 4 = 2, so a(4) = 2. - _Felix Fröhlich_, Oct 04 2016
Links
- János Pintz, On the ratio of consecutive gaps between primes, arXiv:1406.2658 [math.NT], 2014.
- János Pintz, On the Ratio of Consecutive Gaps Between Primes, in Carl Pomerance and Michael Th. Rassias, Analytic Number Theory; In Honor of Helmut Maier’s 60th Birthday, Springer International Publishing, 2015, ISBN 978-3-319-22239-4, pp. 285-304.
Programs
-
Mathematica
Table[Mod[Prime[n + 2] - Prime[n + 1], Prime[n + 1] - Prime[n]], {n, 1, 100, 1}]
-
PARI
a(n) = (prime(n+2)-prime(n+1)) % (prime(n+1)-prime(n)) \\ Felix Fröhlich, Oct 04 2016