A276862 First differences of the Beatty sequence A003151 for 1 + sqrt(2).
2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 3, 2
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..9999 [Offset adapted by _Georg Fischer_, Mar 07 2020]
- Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024. See pp. 17-18.
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Crossrefs
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A003151 as the parent: A003151, A001951, A001952, A003152, A006337, A080763, A082844 (conjectured), A097509, A159684, A188037, A245219 (conjectured), A276862. - N. J. A. Sloane, Mar 09 2021
Programs
-
Magma
[Floor((n+1)*(1 + Sqrt(2))) - Floor(n*(1+Sqrt(2))): n in [1..100]]; // G. C. Greubel, Aug 16 2018
-
Mathematica
z = 500; r = 1+Sqrt[2]; b = Table[Floor[k*r], {k, 0, z}]; (* A003151 *) Differences[b] (* A276862 *) Last@SubstitutionSystem[{2 -> {2, 3}, 3 -> {2, 3, 2}}, {2}, 5] (* John Keith, Apr 21 2021 *)
-
PARI
vector(100, n, floor((n+1)*(1 + sqrt(2))) - floor(n*(1+sqrt(2)))) \\ G. C. Greubel, Aug 16 2018
-
Python
from math import isqrt def A276862(n): return 1-isqrt(m:=n*n<<1)+isqrt(m+(n<<2)+2) # Chai Wah Wu, Aug 03 2022
Formula
a(n) = 1 + A006337(n) for n >+ 1. - R. J. Mathar, Sep 30 2016
Fixed point of the morphism 2 -> 2,3; 3 -> 2,3,2. - John Keith, Apr 21 2021
Extensions
Corrected by Michel Dekking, Feb 18 2020
Comments