A276871
Sums-complement of the Beatty sequence for sqrt(5).
Original entry on oeis.org
1, 10, 19, 28, 37, 48, 57, 66, 75, 86, 95, 104, 113, 124, 133, 142, 151, 162, 171, 180, 189, 198, 209, 218, 227, 236, 247, 256, 265, 274, 285, 294, 303, 312, 323, 332, 341, 350, 359, 370, 379, 388, 397, 408, 417, 426, 435, 446, 455, 464, 473, 484, 493, 502
Offset: 1
The Beatty sequence for sqrt(5) is A022839 = (0,2,4,6,8,11,13,15,...), with difference sequence s = A081427 = (2,2,2,2,3,2,2,2,3,2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,4,5,6,7,8,9,11,12,...), with complement (1,10,19,28,37,...).
-
z = 500; r = Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}]; (* A022839 *)
t = Differences[b]; (* A081427 *)
c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276871 *)
A276854
Beatty sequence for 1 + sqrt(5).
Original entry on oeis.org
0, 3, 6, 9, 12, 16, 19, 22, 25, 29, 32, 35, 38, 42, 45, 48, 51, 55, 58, 61, 64, 67, 71, 74, 77, 80, 84, 87, 90, 93, 97, 100, 103, 106, 110, 113, 116, 119, 122, 126, 129, 132, 135, 139, 142, 145, 148, 152, 155, 158, 161, 165, 168, 171, 174, 177, 181, 184, 187
Offset: 0
-
z = 500; r = 1+Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}] (* A276854 *)
-
from sympy import integer_nthroot
def A276854(n): return n+integer_nthroot(5*n**2,2)[0] # Chai Wah Wu, Mar 16 2021
A276881
Sums-complement of the Beatty sequence for 1 + sqrt(5).
Original entry on oeis.org
1, 2, 5, 8, 11, 14, 15, 18, 21, 24, 27, 28, 31, 34, 37, 40, 41, 44, 47, 50, 53, 54, 57, 60, 63, 66, 69, 70, 73, 76, 79, 82, 83, 86, 89, 92, 95, 96, 99, 102, 105, 108, 109, 112, 115, 118, 121, 124, 125, 128, 131, 134, 137, 138, 141, 144, 147, 150, 151, 154
Offset: 1
The Beatty sequence for 1 + sqrt(5) is A276854 = (0,3,6,9,12,16,19,...), with difference sequence s = A276863 = (3,3,3,3,4,3,3,3,4,3,3,3,4,3,3,3,4,...). The sums s(j)+s(j+1)+...+s(k) include (3,4,6,7,9,10,12,13,...), with complement (1,2,5,8,11,14,15,,...).
-
z = 500; r = 1+ Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}]; (* A276854 *)
t = Differences[b]; (* A276863 *)
c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w] (* A276881 *)
Showing 1-3 of 3 results.
Comments