A276871
Sums-complement of the Beatty sequence for sqrt(5).
Original entry on oeis.org
1, 10, 19, 28, 37, 48, 57, 66, 75, 86, 95, 104, 113, 124, 133, 142, 151, 162, 171, 180, 189, 198, 209, 218, 227, 236, 247, 256, 265, 274, 285, 294, 303, 312, 323, 332, 341, 350, 359, 370, 379, 388, 397, 408, 417, 426, 435, 446, 455, 464, 473, 484, 493, 502
Offset: 1
The Beatty sequence for sqrt(5) is A022839 = (0,2,4,6,8,11,13,15,...), with difference sequence s = A081427 = (2,2,2,2,3,2,2,2,3,2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,4,5,6,7,8,9,11,12,...), with complement (1,10,19,28,37,...).
-
z = 500; r = Sqrt[5]; b = Table[Floor[k*r], {k, 0, z}]; (* A022839 *)
t = Differences[b]; (* A081427 *)
c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276871 *)
A276888
Sums-complement of the Beatty sequence for 2 + sqrt(1/2).
Original entry on oeis.org
1, 4, 7, 12, 15, 20, 23, 26, 31, 34, 39, 42, 45, 50, 53, 58, 61, 66, 69, 72, 77, 80, 85, 88, 91, 96, 99, 104, 107, 112, 115, 118, 123, 126, 131, 134, 137, 142, 145, 150, 153, 156, 161, 164, 169, 172, 177, 180, 183, 188, 191, 196, 199, 202, 207, 210, 215, 218
Offset: 1
The Beatty sequence for 2 + sqrt(1/2) is A182969 = (0,2,5,8,10,13,16,18,21,...), with difference sequence s = A276869 = (2,3,3,2,3,3,2,3,3,3,2,3,3,2,3,3,3,2,...). The sums s(j)+s(j+1)+...+s(k) include (2,3,5,6,8,9,10,11,13,14,16,...), with complement (1,4,7,12,15,20,23,...).
-
z = 500; r = 2 + Sqrt[1/2]; b = Table[Floor[k*r], {k, 0, z}]; (* A182769 *)
t = Differences[b]; (* A276869 *)
c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];
u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];
w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276888 *)
Showing 1-2 of 2 results.
Comments