cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276890 Number A(n,k) of ordered set partitions of [n] such that for each block b the smallest integer interval containing b has at most k elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 6, 0, 1, 1, 3, 10, 24, 0, 1, 1, 3, 13, 44, 120, 0, 1, 1, 3, 13, 62, 234, 720, 0, 1, 1, 3, 13, 75, 352, 1470, 5040, 0, 1, 1, 3, 13, 75, 466, 2348, 10656, 40320, 0, 1, 1, 3, 13, 75, 541, 3272, 17880, 87624, 362880, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 21 2016

Keywords

Comments

Column k > 0 is asymptotic to exp(k-1) * n!. - Vaclav Kotesovec, Sep 22 2016

Examples

			Square array A(n,k) begins:
  1,    1,     1,     1,     1,     1,     1,     1, ...
  0,    1,     1,     1,     1,     1,     1,     1, ...
  0,    2,     3,     3,     3,     3,     3,     3, ...
  0,    6,    10,    13,    13,    13,    13,    13, ...
  0,   24,    44,    62,    75,    75,    75,    75, ...
  0,  120,   234,   352,   466,   541,   541,   541, ...
  0,  720,  1470,  2348,  3272,  4142,  4683,  4683, ...
  0, 5040, 10656, 17880, 26032, 34792, 42610, 47293, ...
		

Crossrefs

Main diagonal gives: A000670.

Programs

  • Maple
    b:= proc(n, m, l) option remember; `if`(n=0, m!,
          add(b(n-1, max(m, j), [subsop(1=NULL, l)[],
          `if`(j<=m, 0, j)]), j={l[], m+1} minus {0}))
        end:
    A:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0),
                 `if`(k=1, n!, b(n, 0, [0$(k-1)]))):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, m_, l_List] := b[n, m, l] = If[n == 0, m!, Sum[b[n - 1, Max[m, j], Append[ReplacePart[l, 1 -> Nothing], If[j <= m, 0, j]]], {j, Append[l, m + 1] ~Complement~ {0}}]]; A[n_, k_] := If[k==0, If[n==0, 1, 0], If[k==1, n!, b[n, 0, Array[0&, k-1]]]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 06 2017, after Alois P. Heinz *)

Formula

A(n,k) = Sum_{j=0..k} A276891(n,j).