cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276918 a(2n) = A060867(n+1), a(2n+1) = A092440(n+1).

Original entry on oeis.org

1, 5, 9, 25, 49, 113, 225, 481, 961, 1985, 3969, 8065, 16129, 32513, 65025, 130561, 261121, 523265, 1046529, 2095105, 4190209, 8384513, 16769025, 33546241, 67092481, 134201345, 268402689, 536838145, 1073676289, 2147418113, 4294836225, 8589803521, 17179607041
Offset: 0

Views

Author

Daniel Poveda Parrilla, Jan 26 2017

Keywords

Comments

In binary there is a pattern in how the zeros and ones appear:
a(0) = 01
a(1) = 101
a(2) = 1001
a(3) = 11001
a(4) = 110001
a(5) = 1110001
a(6) = 11100001
a(7) = 111100001
a(8) = 1111000001
a(9) = 11111000001
a(10) = 111110000001
a(11) = 1111110000001
a(12) = 11111100000001
a(13) = 111111100000001
a(14) = 1111111000000001
a(15) = 11111111000000001
Graphically, each term can be obtained by successively and alternately forming squares and centered squares as shown in the illustration.

Crossrefs

Programs

  • Mathematica
    Table[1+2^(n+2)-2^(1+n/2)+(-1)^(n+1) 2^(1+n/2)-2^((n+1)/2)+(-1)^(n+2) 2^((n+1)/2), {n,0,28}] (*or*)
    CoefficientList[Series[(-1 - 2 x + 6 x^2 - 4 x^3)/(-1 + 3 x - 6 x^3 + 4 x^4), {x,0,28}], x] (*or*)
    LinearRecurrence[{3, 0, -6, 4}, {1, 5, 9, 25}, 29]
  • PARI
    Vec((-1-2*x+6*x^2-4*x^3) / (-1+3*x-6*x^3+4*x^4) + O(x^29))

Formula

a(n) = 1 + 2^(n+2) - 2^(1 + n/2) + (-1)^(n+1)*2^(1 + n/2) - 2^((n+1)/2) + (-1)^(n+2)*2^((n+1)/2).
a(n) = 3*a(n-1) - 6*a(n-3) + 4*a(n-4) for n>3.
G.f.: (-1-2*x+6*x^2-4*x^3)/(-1+3*x-6*x^3+4*x^4).