cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276922 Number T(n,k) of ordered set partitions of [n] where the maximal block size equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 24, 42, 8, 1, 0, 120, 330, 80, 10, 1, 0, 720, 2970, 860, 120, 12, 1, 0, 5040, 30240, 10290, 1540, 168, 14, 1, 0, 40320, 345240, 136080, 21490, 2464, 224, 16, 1, 0, 362880, 4377240, 1977360, 326970, 38808, 3696, 288, 18, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0,     1;
  0,     2,      1;
  0,     6,      6,      1;
  0,    24,     42,      8,     1;
  0,   120,    330,     80,    10,    1;
  0,   720,   2970,    860,   120,   12,   1;
  0,  5040,  30240,  10290,  1540,  168,  14,  1;
  0, 40320, 345240, 136080, 21490, 2464, 224, 16, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A000142 (for n>0), A320758, A320759, A320760, A320761, A320762, A320763, A320764, A320765, A320766.
Row sums give A000670.
T(2n,n) gives A276923.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(
           A(n-i, k)*binomial(n, i), i=1..min(n, k)))
        end:
    T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n - i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; T[n_, k_] :=  A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 10}, { k, 0, n}] // Flatten (* Jean-François Alcover, Feb 11 2017, translated from Maple *)

Formula

E.g.f. for column k>0: 1/(1-Sum_{i=1..k} x^i/i!) - 1/(1-Sum_{i=1..k-1} x^i/i!).
T(n,k) = A276921(n,k) - A276921(n,k-1) for k>0. T(n,0) = A000007(0).