A276922 Number T(n,k) of ordered set partitions of [n] where the maximal block size equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 1, 0, 6, 6, 1, 0, 24, 42, 8, 1, 0, 120, 330, 80, 10, 1, 0, 720, 2970, 860, 120, 12, 1, 0, 5040, 30240, 10290, 1540, 168, 14, 1, 0, 40320, 345240, 136080, 21490, 2464, 224, 16, 1, 0, 362880, 4377240, 1977360, 326970, 38808, 3696, 288, 18, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 1; 0, 2, 1; 0, 6, 6, 1; 0, 24, 42, 8, 1; 0, 120, 330, 80, 10, 1; 0, 720, 2970, 860, 120, 12, 1; 0, 5040, 30240, 10290, 1540, 168, 14, 1; 0, 40320, 345240, 136080, 21490, 2464, 224, 16, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(n=0, 1, add( A(n-i, k)*binomial(n, i), i=1..min(n, k))) end: T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n - i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 10}, { k, 0, n}] // Flatten (* Jean-François Alcover, Feb 11 2017, translated from Maple *)