cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276935 Number of distinct prime factors prime(k) of n such that prime(k)^k, but not prime(k)^(k+1) is a divisor of n.

Original entry on oeis.org

0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2016

Keywords

Examples

			For n = 12 = 2*2*3 = prime(1)^2 * prime(2)^1, neither of the prime factors satisfies the condition, thus a(12) = 0.
For n = 18 = 2*3*3 = prime(1)^1 * prime(2)^2, both prime factors satisfy the condition, thus a(18) = 1+1 = 2.
For n = 750 = 2*3*5*5*5 = prime(1)^1 * prime(2)^1 * prime(3)^3, only the prime factors 2 and 5 satisfy the condition, thus a(750) = 1+1 = 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[PrimePi[p] == e, 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 30 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); sum(i = 1, #f~, primepi(f[i,1]) == f[i,2]);} \\ Amiram Eldar, Sep 30 2023

Formula

a(1) = 0, for n > 1, a(n) = a(A028234(n)) + [A067029(n) = A055396(n)], where [] is Iverson bracket, giving 1 as its result when the stated equivalence is true and 0 otherwise.
From Amiram Eldar, Sep 30 2023: (Start)
Additive with a(p^e) = 1 if e = primepi(p), and 0 otherwise.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} (1/prime(k)^k - 1/prime(k)^(k+1)) = 0.33083690651252383414... . (End)