cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A276955 Square array A(row,col): A(row,1) = A273670(row-1), and for col > 1, A(row,col) = A153880(A(row,col-1)); Dispersion of factorial base left shift A153880.

Original entry on oeis.org

1, 2, 3, 6, 8, 4, 24, 30, 12, 5, 120, 144, 48, 14, 7, 720, 840, 240, 54, 26, 9, 5040, 5760, 1440, 264, 126, 32, 10, 40320, 45360, 10080, 1560, 744, 150, 36, 11, 362880, 403200, 80640, 10800, 5160, 864, 168, 38, 13, 3628800, 3991680, 725760, 85680, 41040, 5880, 960, 174, 50, 15, 39916800, 43545600, 7257600, 766080, 367920, 46080, 6480, 984, 246, 56, 16
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2016

Keywords

Comments

The square array A(row,col) is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
When viewed in factorial base (A007623) the terms on each row start all with the same prefix, but with an increasing number of zeros appended to the end. For example, for row 8 (A001344 from a(1)=11 onward), the terms written in factorial base look as: 121, 1210, 12100, 121000, ...

Examples

			The top left {1..9} x {1..18} corner of the array:
   1,  2,   6,   24,   120,    720,    5040,    40320,    362880
   3,  8,  30,  144,   840,   5760,   45360,   403200,   3991680
   4, 12,  48,  240,  1440,  10080,   80640,   725760,   7257600
   5, 14,  54,  264,  1560,  10800,   85680,   766080,   7620480
   7, 26, 126,  744,  5160,  41040,  367920,  3669120,  40279680
   9, 32, 150,  864,  5880,  46080,  408240,  4032000,  43908480
  10, 36, 168,  960,  6480,  50400,  443520,  4354560,  47174400
  11, 38, 174,  984,  6600,  51120,  448560,  4394880,  47537280
  13, 50, 246, 1464, 10200,  81360,  730800,  7297920,  80196480
  15, 56, 270, 1584, 10920,  86400,  771120,  7660800,  83825280
  16, 60, 288, 1680, 11520,  90720,  806400,  7983360,  87091200
  17, 62, 294, 1704, 11640,  91440,  811440,  8023680,  87454080
  18, 72, 360, 2160, 15120, 120960, 1088640, 10886400, 119750400
  19, 74, 366, 2184, 15240, 121680, 1093680, 10926720, 120113280
  20, 78, 384, 2280, 15840, 126000, 1128960, 11249280, 123379200
  21, 80, 390, 2304, 15960, 126720, 1134000, 11289600, 123742080
  22, 84, 408, 2400, 16560, 131040, 1169280, 11612160, 127008000
  23, 86, 414, 2424, 16680, 131760, 1174320, 11652480, 127370880
		

Crossrefs

Inverse permutation: A276956.
Transpose: A276953.
Cf. A276949 (index of column where n appears), A276951 (index of row).
Cf. A153880.
Columns 1-3: A273670, A276932, A276933.
The following lists some of the rows that have their own entries. Pattern present in the factorial base expansion of the terms on that row is given in double quotes:
Row 1: A000142 (from a(1)=1, "1" onward),
Row 2: A001048 (from a(2)=3, "11" onward),
Row 3: A052849 (from a(2)=4, "20" onward).
Row 4: A052649 (from a(1)=5, "21" onward).
Row 5: A108217 (from a(3)=7, "101" onward).
Row 6: A054119 (from a(3)=9, "111" onward).
Row 7: A052572 (from a(2)=10, "120" onward).
Row 8: A001344 (from a(1)=11, "121" onward).
Row 13: A052560 (from a(3)=18, "300" onward).
Row 16: A225658 (from a(1)=21, "311" onward).
Row 20: A276940 (from a(3) = 27, "1011" onward).
Related or similar permutations: A257505, A275848, A273666.
Cf. also arrays A276617, A276588 & A276945.

Programs

Formula

A(row,1) = A273670(row-1), and for col > 1, A(row,col) = A153880(A(row,col-1))
As a composition of other permutations:
a(n) = A275848(A257505(n)).

A276953 Square array A(row,col) read by antidiagonals: A(1,col) = A273670(col-1), and for row > 1, A(row,col) = A153880(A(row-1,col)); Dispersion of factorial base shift A153880 (array transposed).

Original entry on oeis.org

1, 3, 2, 4, 8, 6, 5, 12, 30, 24, 7, 14, 48, 144, 120, 9, 26, 54, 240, 840, 720, 10, 32, 126, 264, 1440, 5760, 5040, 11, 36, 150, 744, 1560, 10080, 45360, 40320, 13, 38, 168, 864, 5160, 10800, 80640, 403200, 362880, 15, 50, 174, 960, 5880, 41040, 85680, 725760, 3991680, 3628800, 16, 56, 246, 984, 6480, 46080, 367920, 766080, 7257600, 43545600, 39916800
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2016

Keywords

Comments

The array A(row,col) is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
Entries on row n are all multiples of n!. Dividing that factor out gives another array A276616.

Examples

			The top left corner of the array:
    1,    3,     4,     5,     7,     9,    10,    11,    13,    15,    16
    2,    8,    12,    14,    26,    32,    36,    38,    50,    56,    60
    6,   30,    48,    54,   126,   150,   168,   174,   246,   270,   288
   24,  144,   240,   264,   744,   864,   960,   984,  1464,  1584,  1680
  120,  840,  1440,  1560,  5160,  5880,  6480,  6600, 10200, 10920, 11520
  720, 5760, 10080, 10800, 41040, 46080, 50400, 51120, 81360, 86400, 90720
		

Crossrefs

Inverse permutation: A276954.
Transpose: A276955.
Cf. A276949 (index of row where n appears), A276951 (index of column).
Row 1: A273670, Row 2: A276932, Row 3: A276933.
Column 1: A000142. For other columns, see the rows of transposed array A276955.
Related or similar permutations: A257503, A275848, A273666.
Cf. also arrays A276616, A276589 & A276943.

Programs

Formula

A(1,col) = A273670(col-1), and for row > 1, A(row,col) = A153880(A(row-1,col))
As a composition of other permutations:
a(n) = A275848(A257503(n)).
Other identities. For all n >= 1:
A(A276949(n),A276951(n)) = n.

A276951 Index of column where n is located in array A276953 (equally: row in A276955).

Original entry on oeis.org

0, 1, 1, 2, 3, 4, 1, 5, 2, 6, 7, 8, 3, 9, 4, 10, 11, 12, 13, 14, 15, 16, 17, 18, 1, 19, 5, 20, 21, 22, 2, 23, 6, 24, 25, 26, 7, 27, 8, 28, 29, 30, 31, 32, 33, 34, 35, 36, 3, 37, 9, 38, 39, 40, 4, 41, 10, 42, 43, 44, 11, 45, 12, 46, 47, 48, 49, 50, 51, 52, 53, 54, 13, 55, 14, 56, 57, 58, 15, 59, 16, 60, 61, 62, 17, 63, 18, 64
Offset: 0

Views

Author

Antti Karttunen, Sep 22 2016

Keywords

Comments

a(0) = 0 by convention, because 0 is not present in arrays A276953 and A276955.

Crossrefs

Cf. arrays A276953 & A276955. A276949 gives their other index.
Cf. also A257681, A275847.

Programs

Formula

a(0) = 0; for n >= 1, if A260736(n) > 0 [when A276950(n) is not zero, when n is in A273670], then a(n) = A276952(n) = 1 + A273663(n), otherwise a(n) = a(A266193(n)).
Other identities. For all n >= 0:
a(n) = A257681(A275847(n)).

A276932 Row 2 of A276953: a(n) = A153880(A273670(n)).

Original entry on oeis.org

2, 8, 12, 14, 26, 32, 36, 38, 50, 56, 60, 62, 72, 74, 78, 80, 84, 86, 122, 128, 132, 134, 146, 152, 156, 158, 170, 176, 180, 182, 192, 194, 198, 200, 204, 206, 242, 248, 252, 254, 266, 272, 276, 278, 290, 296, 300, 302, 312, 314, 318, 320, 324, 326, 362, 368, 372, 374, 386, 392, 396, 398, 410, 416, 420
Offset: 0

Views

Author

Antti Karttunen, Sep 22 2016

Keywords

Comments

Numbers k for which A276949(k) = 2. Starting offset is 0 (with a(0) = 2) to match with the starting offset of A273670.

Crossrefs

Row 2 of A276953, column 2 of A276955, positions of 2's in A276949.
Cf. also A276931 (terms halved).

Formula

a(n) = A153880(A273670(n)).

A276933 Row 3 of A276953: a(n) = A153880(A153880(A273670(n))).

Original entry on oeis.org

6, 30, 48, 54, 126, 150, 168, 174, 246, 270, 288, 294, 360, 366, 384, 390, 408, 414, 726, 750, 768, 774, 846, 870, 888, 894, 966, 990, 1008, 1014, 1080, 1086, 1104, 1110, 1128, 1134, 1446, 1470, 1488, 1494, 1566, 1590, 1608, 1614, 1686, 1710, 1728, 1734, 1800, 1806, 1824, 1830, 1848, 1854, 2166, 2190, 2208, 2214, 2286, 2310
Offset: 0

Views

Author

Antti Karttunen, Sep 23 2016

Keywords

Comments

All terms are multiples of 6. See A276934.

Crossrefs

Row 3 of A276953, column 3 of A276955.
Cf. A153880, A273670, A276932, A276934 (terms divided by six).
Indices of 3's in A276949.

Programs

Formula

a(n) = 6*A276934(n).

A276954 Inverse permutation to A276953.

Original entry on oeis.org

1, 3, 2, 4, 7, 6, 11, 5, 16, 22, 29, 8, 37, 12, 46, 56, 67, 79, 92, 106, 121, 137, 154, 10, 172, 17, 191, 211, 232, 9, 254, 23, 277, 301, 326, 30, 352, 38, 379, 407, 436, 466, 497, 529, 562, 596, 631, 13, 667, 47, 704, 742, 781, 18, 821, 57, 862, 904, 947, 68, 991, 80, 1036, 1082, 1129, 1177, 1226, 1276, 1327, 1379, 1432, 93
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2016

Keywords

Crossrefs

Inverse: A276953.
Related or similar permutations: A257504, A275847.

Programs

  • Scheme
    (define (A276954 n) (let ((col (A276951 n)) (row (A276949 n))) (* (/ 1 2) (- (expt (+ row col) 2) row col col col -2))))

Formula

a(n) = (1/2) * ((c+r)^2 - r - 3*c + 2), where c = A276951(n), and r = A276949(n).
As a composition of other permutations:
a(n) = A257504(A275847(n)).

A276956 Inverse permutation to A276955.

Original entry on oeis.org

1, 2, 3, 6, 10, 4, 15, 5, 21, 28, 36, 9, 45, 14, 55, 66, 78, 91, 105, 120, 136, 153, 171, 7, 190, 20, 210, 231, 253, 8, 276, 27, 300, 325, 351, 35, 378, 44, 406, 435, 465, 496, 528, 561, 595, 630, 666, 13, 703, 54, 741, 780, 820, 19, 861, 65, 903, 946, 990, 77, 1035, 90, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431, 1485, 104
Offset: 1

Views

Author

Antti Karttunen, Sep 22 2016

Keywords

Crossrefs

Inverse: A276955.
Related permutations: A257506, A275847.

Programs

  • Scheme
    (define (A276956 n) (let ((row (A276951 n)) (col (A276949 n))) (* (/ 1 2) (- (expt (+ row col) 2) row col col col -2))))

Formula

a(n) = (1/2) * ((c+r)^2 - r - 3*c + 2), where c = A276949(n), and r = A276951(n).
As a composition of other permutations:
a(n) = A257506(A275847(n)).
Showing 1-7 of 7 results.