cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276961 Number of set partitions of [2n] with largest set of size n.

Original entry on oeis.org

1, 1, 9, 90, 1015, 12978, 187110, 3008148, 53275365, 1028142830, 21426984722, 478684639524, 11394222257054, 287518726261900, 7658231720886900, 214521099685649640, 6299407928673657135, 193373975592937777770, 6189939300880260745050, 206159811915115686404700
Offset: 0

Views

Author

Alois P. Heinz, Sep 22 2016

Keywords

Comments

The blocks are ordered with increasing least elements.
a(0) = 1 by convention.

Examples

			a(1) = 1: 1|2.
a(2) = 9: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 1|23|4, 14|2|3, 1|24|3, 1|2|34.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          b(n-i, k)*binomial(n-1, i-1), i=1..min(n, k)))
        end:
    a:= n-> `if`(n=0, 1, b(2*n, n)-b(2*n, n-1)):
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[b[n - i, k]*Binomial[n - 1, i - 1], {i, 1, Min[n, k]}]];
    a[n_] := If[n == 0, 1, b[2*n, n] - b[2*n, n - 1]];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 20 2018, translated from Maple *)

Formula

a(n) = A080510(2n,n).
a(n) = A327884(2n,n).
a(n) = ceiling(C(2n,n)*(A000110(n)-1/2)). - Ludovic Schwob, Jan 15 2022