A276969 Odd integers n such that 2^n == 2^7 (mod n).
1, 3, 7, 15, 49, 91, 133, 217, 255, 259, 301, 427, 469, 511, 527, 553, 679, 721, 763, 889, 973, 1015, 1057, 1099, 1141, 1267, 1351, 1393, 1477, 1561, 1603, 1687, 1897, 1939, 1981, 2107, 2149, 2191, 2317, 2359, 2443, 2569, 2611, 2653, 2779, 2863, 2947, 3031, 3073, 3199, 3241, 3409, 3493, 3661, 3787
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
m = 2^7; Join[Select[Range[1, m, 2], Divisible[2^# - m, #] &], Select[Range[m + 1, 10^3, 2], PowerMod[2, #, #] == m &]] (* Robert Price, Oct 12 2018 *)
-
PARI
is(n)=n%2 && Mod(2,n)^n==128 \\ Charles R Greathouse IV, Sep 22 2016
Comments