A276986 Numbers n for which there is a permutation p of (1,2,3,...,n) such that k+p(k) is a Catalan number for 1<=k<=n.
0, 1, 3, 4, 9, 10, 12, 13, 28, 29, 31, 32, 37, 38, 40, 41, 90, 91, 93, 94, 99, 100, 102, 103, 118, 119, 121, 122, 127, 128, 130, 131, 297, 298, 300, 301, 306, 307, 309, 310, 325, 326, 328, 329, 334, 335, 337, 338, 387, 388, 390, 391, 396, 397, 399, 400, 415, 416
Offset: 1
Keywords
Examples
3 is in the sequence because the permutation (1,3,2) added termwise to (1,2,3) yields (2,5,5) and both 2 and 5 are Catalan numbers.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
S:= {0}: for i from 1 to 8 do c:= binomial(2*i,i)/(i+1); S:= S union map(t -> c - t - 1, S); od: sort(convert(S,list)); # Robert Israel, Nov 20 2016
-
Mathematica
CatalanTo[n0_] := Module[{n = n0}, k = 1; L = {}; While[CatalanNumber[k] <= 2*n, L = {L, CatalanNumber[k]}; k++]; L = Flatten[L]] perms[n0_] := Module[{n = n0, S, func, T, T2}, func[k_] := Cases[CatalanTo[n], x_ /; 1 <= x - k <= n] - k; T = Tuples[Table[func[k], {k, 1, n}]]; T2 = Cases[T, x_ /; Length[Union[x]] == Length[x]]; Length[T2]] Select[Range[41], perms[#] > 0 &]
Formula
a(i) + a(2^n+1-i) = A000108(n+1)-1 for 1<=i<=2^n. - Robert Israel, Nov 20 2016
Extensions
More terms from Alois P. Heinz, Sep 28 2016
a(23)-a(58) from Robert Israel, Nov 18 2016
Comments