cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276996 Numerators of coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x)/(k*(k-1)) with B_k(x) the Bernoulli polynomials.

Original entry on oeis.org

1, 0, 0, 1, -1, 1, 0, 1, -3, 1, 1, -1, 6, -10, 5, 0, -1, -15, 95, -40, 16, 239, -1, 13, -85, 240, -237, 79, 0, 403, 21, 385, -1575, 3577, -2947, 421, -46409, -239, 3841, 175, 861, -8036, 45458, -10692, 2673, 0, -82451, -2657, 56177, 1638, 19488, -85260, 139656, -86472, 19216
Offset: 0

Views

Author

Peter Luschny, Oct 01 2016

Keywords

Comments

The polynomials appear in certain asymptotic series for the Gamma function, cf. for example A181855/A181856 and A277000/A277001.

Examples

			Polynomials start:
p_0(x) = 1;
p_1(x) = 0;
p_2(x) = 1/6 + -x + x^2;
p_3(x) = (1/2)*x + -(3/2)*x^2 + x^3;
p_4(x) = 1/60 + -x + 6*x^2 + -10*x^3 + 5*x^4;
p_5(x) = -(1/6)*x + -(15/2)*x^2 + (95/3)*x^3 + -40*x^4 + 16*x^5;
p_6(x) = 239/504 + -(1/4)*x + (13/4)*x^2 + -85*x^3 + 240*x^4 + -237*x^5 + 79*x^6;
Triangle starts:
1;
0,   0;
1,  -1,   1;
0,   1,  -3,   1;
1,  -1,   6, -10,  5;
0,  -1, -15,  95, -40,   16;
239,-1,  13, -85, 240, -237, 79;
		

Crossrefs

Cf. A276997 (denominators); T(2n,0) = A181855(n), T(n,n) = A203852(n).
Cf. A276998.

Programs

  • Maple
    A276996_row := proc(n) local p;
    p := (n,x) -> CompleteBellB(n,0,seq((k-2)!*bernoulli(k,x),k=2..n)):
    seq(numer(coeff(p(n,x),x,k)), k=0..n) end:
    seq(A276996_row(n), n=0..9);
    # Recurrence for the polynomials:
    A276996_poly := proc(n,x) option remember; local z;
    if n = 0 then return 1 fi; z := proc(k) option remember;
    if k=1 then 0 else (k-2)!*bernoulli(k,x) fi end;
    expand(add(binomial(n-1,j)*z(n-j)*A276996_poly(j,x),j=0..n-1)) end:
    for n from 0 to 5 do sort(A276996_poly(n,x)) od;
  • Mathematica
    CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
    p[n_, x_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, x], {k, 2, n}]]];
    row[0] = {1}; row[1] = {0, 0}; row[n_] := CoefficientList[p[n, x], x] // Numerator;
    Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Sep 09 2018 *)

Formula

T(n,k) = Numerator([x^k] p_n(x)) where p_n(x) = Y_{n}(z_1, z_2, z_3,..., z_n) are the complete Bell polynomials evaluated at z_1 = 0 and z_k = (k-2)!*B_k(x) for k>1 and B_k(x) the Bernoulli polynomials.