cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A276997 Denominators of coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x)/(k*(k-1)) with B_k(x) the Bernoulli polynomials.

Original entry on oeis.org

1, 1, 1, 6, 1, 1, 1, 2, 2, 1, 60, 1, 1, 1, 1, 1, 6, 2, 3, 1, 1, 504, 4, 4, 1, 1, 1, 1, 1, 24, 8, 12, 2, 2, 2, 1, 2160, 18, 9, 3, 2, 1, 3, 1, 1, 1, 60, 4, 6, 1, 5, 1, 1, 1, 1, 3168, 48, 16, 6, 3, 2, 2, 1, 2, 1, 1, 1, 288, 32, 144, 12, 12, 4, 2, 1, 6, 2, 1
Offset: 0

Views

Author

Peter Luschny, Oct 01 2016

Keywords

Comments

For formulas and references see A276996.
Compare T(n,0) with A220411.

Examples

			Triangle starts:
     1;
     1,  1;
     6,  1,  1;
     1,  2,  2,  1;
    60,  1,  1,  1, 1;
     1,  6,  2,  3, 1, 1;
   504,  4,  4,  1, 1, 1, 1;
     1, 24,  8, 12, 2, 2, 2, 1;
  2160, 18,  9,  3, 2, 1, 3, 1, 1;
		

Crossrefs

Cf. A276996 (numerators), A220411.

Programs

  • Maple
    A276997_row := proc(n) local p;
    p := (n,x) -> CompleteBellB(n,0,seq((k-2)!*bernoulli(k,x),k=2..n)):
    seq(denom(coeff(p(n,x),x,k)), k=0..n) end:
    seq(A276997_row(n), n=0..11);
  • Mathematica
    CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}];
    p[n_, x_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, x], {k, 2, n}]]];
    row[0] = {1}; row[1] = {1, 1}; row[n_] := CoefficientList[p[n, x], x] // Denominator;
    Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Sep 09 2018 *)