A276997 Denominators of coefficients of polynomials arising from applying the complete Bell polynomials to k!B_k(x)/(k*(k-1)) with B_k(x) the Bernoulli polynomials.
1, 1, 1, 6, 1, 1, 1, 2, 2, 1, 60, 1, 1, 1, 1, 1, 6, 2, 3, 1, 1, 504, 4, 4, 1, 1, 1, 1, 1, 24, 8, 12, 2, 2, 2, 1, 2160, 18, 9, 3, 2, 1, 3, 1, 1, 1, 60, 4, 6, 1, 5, 1, 1, 1, 1, 3168, 48, 16, 6, 3, 2, 2, 1, 2, 1, 1, 1, 288, 32, 144, 12, 12, 4, 2, 1, 6, 2, 1
Offset: 0
Examples
Triangle starts: 1; 1, 1; 6, 1, 1; 1, 2, 2, 1; 60, 1, 1, 1, 1; 1, 6, 2, 3, 1, 1; 504, 4, 4, 1, 1, 1, 1; 1, 24, 8, 12, 2, 2, 2, 1; 2160, 18, 9, 3, 2, 1, 3, 1, 1;
Programs
-
Maple
A276997_row := proc(n) local p; p := (n,x) -> CompleteBellB(n,0,seq((k-2)!*bernoulli(k,x),k=2..n)): seq(denom(coeff(p(n,x),x,k)), k=0..n) end: seq(A276997_row(n), n=0..11);
-
Mathematica
CompleteBellB[n_, zz_] := Sum[BellY[n, k, zz[[1 ;; n-k+1]]], {k, 1, n}]; p[n_, x_] := CompleteBellB[n, Join[{0}, Table[(k-2)! BernoulliB[k, x], {k, 2, n}]]]; row[0] = {1}; row[1] = {1, 1}; row[n_] := CoefficientList[p[n, x], x] // Denominator; Table[row[n], {n, 0, 11}] // Flatten (* Jean-François Alcover, Sep 09 2018 *)
Comments