cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277013 a(n) = number of irreducible polynomial factors (counted with multiplicity) in the n-th Stern polynomial B(n,t).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 4, 1, 2, 3, 6, 1, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 1, 3, 1, 5, 2, 2, 1, 4, 2, 2, 2, 4, 1, 4, 1, 3, 2, 2, 1, 6, 1, 3, 3, 3, 1, 3, 1, 4, 3, 2, 1, 5, 1, 2, 2, 5, 1, 3, 1, 3, 2, 2, 2, 5
Offset: 1

Views

Author

Antti Karttunen, Oct 07 2016

Keywords

Examples

			B(11,t) = t^2 + 3t + 1 which is irreducible, so a(11) = 1.
B(12,t) = t^3 + t^2 = t^2(t+1), so a(12) = 3.
		

Crossrefs

Cf. A186891 (positions of 0 and 1's in this sequence), A277027 (terms squared).
Differs from A001222 for the first time at n=25, where a(25)=1. A277190 gives the positions of differing terms.

Programs

Formula

a(n) = A277322(A260443(n)).
It seems that for all n >= 1, a(2^n) = n.