A277013 a(n) = number of irreducible polynomial factors (counted with multiplicity) in the n-th Stern polynomial B(n,t).
0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 3, 3, 1, 3, 1, 5, 2, 2, 2, 4, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 5, 2, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 4, 1, 2, 3, 6, 1, 3, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 1, 3, 1, 5, 2, 2, 1, 4, 2, 2, 2, 4, 1, 4, 1, 3, 2, 2, 1, 6, 1, 3, 3, 3, 1, 3, 1, 4, 3, 2, 1, 5, 1, 2, 2, 5, 1, 3, 1, 3, 2, 2, 2, 5
Offset: 1
Keywords
Examples
B(11,t) = t^2 + 3t + 1 which is irreducible, so a(11) = 1. B(12,t) = t^3 + t^2 = t^2(t+1), so a(12) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..85085
Crossrefs
Programs
-
PARI
A277013 = n -> vecsum(factor(ps(n))[,2]); ps(n) = if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2))); \\ From Charles R Greathouse IV code in A186891. for(n=1, 85085, write("b277013.txt", n, " ", A277013(n)));