cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277023 a(n) = A276573(A260732(n)); For n >= 1, a(n) = the next larger term right after each (n^2)-1 in the infinite trunk of least squares beanstalk.

Original entry on oeis.org

0, 3, 6, 11, 16, 27, 38, 51, 64, 83, 102, 123, 144, 171, 198, 227, 256, 291, 326, 361, 400, 444, 486, 531, 576, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1296, 1371, 1446, 1523, 1600, 1683, 1767, 1851, 1938, 2025, 2118, 2211, 2304, 2403, 2502, 2603, 2706, 2811, 2918, 3027, 3136, 3251, 3366, 3483, 3600, 3723, 3846
Offset: 0

Views

Author

Antti Karttunen, Oct 03 2016

Keywords

Crossrefs

Cf. A277015 (the positions of squares in this sequence), A277024, A277025 A277026.

Programs

Formula

a(n) = A276573(A260732(n)).

A277025 n for which A277023(4n) is square, thus A277024(4n) is zero.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 9, 10, 12, 14, 15, 17, 18, 20, 21, 23, 24, 26, 28, 30, 31, 33, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 48, 51, 52, 54, 55, 56, 57, 58, 60, 63, 66, 68, 69, 70, 71, 72, 74, 78, 80, 81, 84, 88, 90, 91, 93, 95, 96, 98, 99, 102, 105, 107, 108, 110, 111, 112, 114, 117, 118, 120, 121, 123, 126, 129, 131
Offset: 0

Views

Author

Antti Karttunen, Oct 03 2016

Keywords

Comments

Indexing starts from zero because a(0)=0 is a special case in this sequence.

Crossrefs

Complement: A277026.

A277024 a(n) = A277023(n) - n^2.

Original entry on oeis.org

0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 0, 0, 3, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 0, 2, 3, 2, 2, 0, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 0, 0, 2, 2, 2, 2, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 0, 2, 3, 2, 2, 0, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 0
Offset: 0

Views

Author

Antti Karttunen, Oct 03 2016

Keywords

Crossrefs

Cf. A277015 (positions of zeros), A277025 (positions where 4n is zero), A277026 (where 4n is nonzero).

Programs

Formula

a(n) = A277023(n) - n^2.
Showing 1-3 of 3 results.