cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277043 Inverse binomial transform of A277041.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 30, 0, 0, 10921, 0, 0, 6308995, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Sep 25 2016

Keywords

Examples

			G.f.: A(x) = 1 + x^3 + 30*x^6 + 10921*x^9 + 6308995*x^12 +...
such that the binomial transform forms the g.f. of A277041:
A(x/(1-x))/(1-x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 51*x^6 + 246*x^7 + 897*x^8 + 13526*x^9 + 115631*x^10 + 614681*x^11 + 8739556*x^12 + 89877217*x^13 + 596072842*x^14 +...+ A277041(n)*x^n +...
Also, A(x/(G(x) - x)) = G(x) - x where G(x) = g.f. of A277042 where
G(x) = 1 + x + x^3 + 27*x^6 + 10666*x^9 + 6174792*x^12 +...+ A277042(n)*x^n +...
		

Crossrefs

Formula

Let G(x) be the g.f. of A277042, then g.f. A(x) satisfies:
(1) G(x*A(x)) = (1+x)*A(x).
(2) A(x/(G(x) - x)) = G(x) - x.
(3) A(x) = (1/x)*Series_Reversion(x/(G(x) - x)).
(4) G(x) = x + x/Series_Reversion(x*A(x)).