cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277076 Expansion of f(-x)^8 * Q(x) in powers of x where f() is a Ramanujan theta function and Q() is a Ramanujan Lambert series.

Original entry on oeis.org

1, 232, 260, -5760, 6890, 7744, 33176, -115200, 14035, 60320, 1508, 449280, -380770, -599040, 7640, 599040, -755943, 1598480, 1843200, -2620800, -988858, -2995712, 3857360, -1497600, -2004730, 7696832, 2699684, 1670400, -7188480, -11980800, 1791400, 10736640
Offset: 0

Views

Author

Michael Somos, Sep 27 2016

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Ramanujan Lambert series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = 1 + 232*x + 260*x^2 - 5760*x^3 + 6890*x^4 + 7744*x^5 + 33176*x^6 - 115200*x^7 + 14035*x^8 + ...
G.f. = q + 232*q^4 + 260*q^7 - 5760*q^10 + 6890*q^13 + 7744*q^16 + 33176*q^19 - 115200*q^22 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 329, 2nd equation.

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(9), 8), 95); A[1] + 232*A[4];
  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ QPochhammer[ x]^8 (1 + 240 Sum[ DivisorSigma[ 3, k] x^k, {k, n}]), {x, 0, n}]];
    a[ n_] := SeriesCoefficient[ With[ {A1 = QPochhammer[ x]^8, A2 = QPochhammer[ x^2]^8}, A1 (A1^3 + 256 x A2^3) / (A1 A2)], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^8 * sum(k=1, n, 240 * sigma(k, 3) * x^k, 1 + A), n))};
    
  • PARI
    {a(n) = my(A, A1, A2); if( n<0, 0, A = x * O(x^n); A1 = eta(x + A)^8; A2 = eta(x^2 + A)^8; polcoeff( A1 * (A1^3 + 256 * x * A2^3) / (A1 * A2), n))};
    

Formula

Expansion of f(-x)^8 * (f(-x)^24 + 256 * x * f(-x^2)^24) / (f(-x) * f(-x^2))^8 in powers of x.
a(n) = b(3*n+1) where b() is multiplicative with b(p^e) = 0^e if p=3 and b(p^e) = b(p)*b(p^(e-1)) - p^7*b(p^(e-2)) otherwise.
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 6561 (t/i)^8 f(t) where q = exp(2 Pi i t).
Convolution of A000731 and A004009.