A277081 Irregular triangle read by rows: T(n,k) = number of size k subsets of S_n that remain unchanged under the operation of replacing a permutation with its inverse.
1, 1, 1, 1, 1, 2, 1, 1, 4, 7, 8, 7, 4, 1, 1, 10, 52, 190, 546, 1302, 2660, 4754, 7535, 10692, 13672, 15820, 16604, 15820, 13672, 10692, 7535, 4754, 2660, 1302, 546, 190, 52, 10, 1, 1, 26, 372, 3822, 31306, 216086, 1300420, 6981650, 33992275, 151945820
Offset: 0
Examples
For n = 3 and k = 3 the subsets unchanged by inverse are {213,132,123}, {321,132,123}, {321,213,123}, {231,312,123}, {321,132,213}, {132,312,231},{213,312,231}, {321,231,312} hence T(3,3) = 8. (Here we are using the one-line notation for permutations, not the product of cycles form.) Triangle starts: 1, 1; 1, 1; 1, 2, 1; 1, 4, 7, 8, 7, 4, 1;
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..880 (rows 0..6)
Programs
-
PARI
\\ here b(n) is A000085(n). b(n)={sum(k=0, n\2, n!/((n-2*k)!*2^k*k!))} Row(n)={my(t=b(n)); vector(n!+1, k, k--; sum(i=0, k\2, binomial((n!-t)/2, i)*binomial(t, k-2*i)))} { for(n=0, 4, print(Row(n))) } \\ Andrew Howroyd, Feb 03 2021
Formula
T(n,k) = Sum( C((n! - I(n))/2, i)*C(I(n), k - 2*i) for i in [0..floor(k/2)]) where I(n) = A000085(n).
Comments