cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277099 Number of partitions of n containing no part i of multiplicity i+1.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 8, 12, 18, 24, 32, 45, 59, 79, 104, 137, 177, 229, 295, 377, 477, 605, 761, 956, 1193, 1484, 1840, 2276, 2800, 3441, 4210, 5141, 6261, 7603, 9206, 11132, 13419, 16144, 19380, 23223, 27763, 33134, 39467, 46931, 55703, 66008, 78085, 92239, 108776, 128091, 150617
Offset: 0

Views

Author

Emeric Deutsch, Sep 30 2016

Keywords

Examples

			a(4) = 4 because we have [1,1,1,1], [1,3], [2,2], and [4]; the partition [1,1,2] does not qualify.
		

Crossrefs

Programs

  • Maple
    g:= product(1/(1-x^i)-x^(i*(i+1)), i = 1 .. 100): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(i+1=j, 0, b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Sep 30 2016
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1/(1-x^k) - x^(k*(k+1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 30 2016 *)

Formula

a(n) = A276433(n,0).
G.f.: g(x) = Product_{i>=1} (1/(1-x^i) - x^(i*(i+1))).