A277105 a(n) = (27*3^n - 63)/2.
9, 90, 333, 1062, 3249, 9810, 29493, 88542, 265689, 797130, 2391453, 7174422, 21523329, 64570050, 193710213, 581130702, 1743392169, 5230176570, 15690529773, 47071589382, 141214768209, 423644304690, 1270932914133, 3812798742462, 11438396227449, 34315188682410, 102945566047293, 308836698141942, 926510094425889
Offset: 1
Links
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- Eric Weisstein's World of Mathematics, Hanoi Graph
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Programs
-
Magma
[(27*3^n-63)/2: n in [1..30]]; // Bruno Berselli, Nov 14 2016
-
Maple
seq((1/2)*(9*(3^(n+1)-7)), n = 1..30);
-
Mathematica
Table[(27 3^n - 63)/2, {n, 1, 30}] (* Bruno Berselli, Nov 14 2016 *)
Formula
O.g.f.: 9*x*(1 + 6*x)/((1 - x)*(1 - 3*x)).
E.g.f.: 9*(1 - exp(x))*(4 - 3*exp(x) - 3*exp(2*x))/2. - Bruno Berselli, Nov 14 2016
a(n) = 9*A116970(n+1).
Comments