cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277105 a(n) = (27*3^n - 63)/2.

Original entry on oeis.org

9, 90, 333, 1062, 3249, 9810, 29493, 88542, 265689, 797130, 2391453, 7174422, 21523329, 64570050, 193710213, 581130702, 1743392169, 5230176570, 15690529773, 47071589382, 141214768209, 423644304690, 1270932914133, 3812798742462, 11438396227449, 34315188682410, 102945566047293, 308836698141942, 926510094425889
Offset: 1

Views

Author

Emeric Deutsch, Nov 05 2016

Keywords

Comments

a(n) is the second Zagreb index of the Hanoi graph H[n] (n>=2).
The second Zagreb index of a simple connected graph g is the sum of the degree products d(i)d(j) over all edges ij of g.
The M-polynomial of the Hanoi graph H[n] is M(H[n],x,y) = 6*x^2*y^3 + (3/2)*(3^n - 5)*x^3*y^3.

Crossrefs

Programs

  • Magma
    [(27*3^n-63)/2: n in [1..30]]; // Bruno Berselli, Nov 14 2016
  • Maple
    seq((1/2)*(9*(3^(n+1)-7)), n = 1..30);
  • Mathematica
    Table[(27 3^n - 63)/2, {n, 1, 30}] (* Bruno Berselli, Nov 14 2016 *)

Formula

O.g.f.: 9*x*(1 + 6*x)/((1 - x)*(1 - 3*x)).
E.g.f.: 9*(1 - exp(x))*(4 - 3*exp(x) - 3*exp(2*x))/2. - Bruno Berselli, Nov 14 2016
a(n) = 9*A116970(n+1).