cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A277107 a(n) = 16*3^n - 48.

Original entry on oeis.org

0, 96, 384, 1248, 3840, 11616, 34944, 104928, 314880, 944736, 2834304, 8503008, 25509120, 76527456, 229582464, 688747488, 2066242560, 6198727776, 18596183424, 55788550368, 167365651200, 502096953696, 1506290861184, 4518872583648, 13556617751040
Offset: 1

Views

Author

Emeric Deutsch, Nov 05 2016

Keywords

Comments

a(n) is the second Zagreb index of the Sierpiński [Sierpinski] gasket graph S[n] (n>=2).
The second Zagreb index of a simple connected graph g is the sum of the degree products d(i)d(j) over all edges ij of g.
The M-polynomial of the Sierpinski gasket graph S[n] is M(S[n], x, y) = 6*x^2*y^4 + (3^n - 6)*x^4*y^4.

Crossrefs

Cf. A277106.

Programs

  • Maple
    seq(16*3^n-48, n = 1..30);
  • Mathematica
    Table[16*3^n - 48, {n, 25}] (* or *) Rest@ CoefficientList[Series[96 x^2/((1 - x) (1 - 3 x)), {x, 0, 25}], x] (* Michael De Vlieger, Nov 06 2016 *)
    LinearRecurrence[{4,-3},{0,96},30] (* Harvey P. Dale, Dec 20 2024 *)

Formula

G.f.: 96*x^2/((1 - x)*(1 - 3*x)).
a(n) = 4*a(n-1) - 3*a(n-2).
a(n) = 96*A003462(n-1). - R. J. Mathar, Apr 07 2022
Showing 1-1 of 1 results.