cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277108 a(n) = 4*n*(n+5).

Original entry on oeis.org

24, 56, 96, 144, 200, 264, 336, 416, 504, 600, 704, 816, 936, 1064, 1200, 1344, 1496, 1656, 1824, 2000, 2184, 2376, 2576, 2784, 3000, 3224, 3456, 3696, 3944, 4200, 4464, 4736, 5016, 5304, 5600, 5904, 6216, 6536, 6864, 7200, 7544, 7896, 8256, 8624, 9000, 9384, 9776
Offset: 1

Views

Author

Emeric Deutsch, Nov 05 2016

Keywords

Comments

a(n) is the second Zagreb index of the helm graph H[n] (n>=3).
The second Zagreb index of a simple connected graph g is the sum of the degree products d(i)d(j) over all edges ij of g.
The M-polynomial of the Helm graph H[n] is M(H[n]; x,y) = n*x*y^4 + n*x^4*y^4 + n*x^4*y^n. - Emeric Deutsch, May 11 2018
The helm graph H[n] is the graph obtained from an n-wheel graph by adjoining a pendant edge at each node of the cycle. - Emeric Deutsch, May 11 2018
a(n) - 16*n + 1 is a square. - Muniru A Asiru, Jun 01 2018

Crossrefs

Programs

  • GAP
    List([1..50],n->4*n*(n+5)); # Muniru A Asiru, Jun 01 2018
  • Maple
    seq(4*n^2+20*n, n = 1 .. 40);
  • Mathematica
    Table[4 n (n + 5), {n, 40}] (* or *)
    Rest@ CoefficientList[Series[8 x (3 - 2 x)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, Nov 06 2016 *)
  • PARI
    a(n)=4*n*(n+5) \\ Charles R Greathouse IV, Jun 17 2017
    

Formula

G.f.: 8*z*(3-2*z)/(1-z)^3.
a(n) = 4*A028557(n) = 8*A055998(n).
From Elmo R. Oliveira, Jan 28 2025: (Start)
E.g.f.: 4*exp(x)*x*(6 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)