cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277130 Number of planar branching factorizations of n.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 6, 2, 3, 1, 14, 1, 3, 3, 24, 1, 14, 1, 14, 3, 3, 1, 78, 2, 3, 6, 14, 1, 25, 1, 112, 3, 3, 3, 110, 1, 3, 3, 78, 1, 25, 1, 14, 14, 3, 1, 464, 2, 14, 3, 14, 1, 78, 3, 78, 3, 3, 1, 206, 1, 3, 14, 568, 3, 25, 1, 14, 3, 25, 1, 850, 1, 3, 14, 14
Offset: 1

Views

Author

Michel Marcus, Oct 01 2016

Keywords

Comments

A planar branching factorization of n is either the number n itself or a sequence of at least two planar branching factorizations, one of each factor in an ordered factorization of n. - Gus Wiseman, Sep 11 2018

Examples

			From _Gus Wiseman_, Sep 11 2018: (Start)
The a(12) = 14 planar branching factorizations:
  12,
  (2*6), (3*4), (4*3), (6*2), (2*2*3), (2*3*2), (3*2*2),
  (2*(2*3)), (2*(3*2)), (3*(2*2)), ((2*2)*3), ((2*3)*2), ((3*2)*2).
(End)
		

Crossrefs

Programs

  • C
    #include 
    #include 
    #include 
    #define MAX 10000
    /* Number of planar branching factorizations of n. */
    #define lu unsigned long
    lu nbr[MAX]; /* number of branching */
    lu a, b, d, e; /* temporary variables */
    lu n; lu m, p; // factors of n
    lu x; // square root of n
    void main(unsigned argc, char *argv[])
    {
      memset(nbr, 0, MAX*sizeof(lu));
      for (b=0, n=1; nDaniel Mondot, May 19 2017 */
  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]]
    otfs[n_]:=Prepend[Join@@Table[Tuples[otfs/@f],{f,Select[ordfacs[n],Length[#]>1&]}],n];
    Table[Length[otfs[n]],{n,20}] (* Gus Wiseman, Sep 11 2018 *)

Formula

a(prime^n) = A118376(n). a(product of n distinct primes) = A319122(n). - Gus Wiseman, Sep 11 2018

Extensions

Terms a(65) and beyond from Daniel Mondot, May 19 2017