A277173 Numbers m such that b^sigma(m) == b^phi(m) == b^numdiv(m) == b^m (mod m) for every integer b.
1, 2, 6, 12, 24, 60, 120, 126, 240, 420, 480, 504, 672, 780, 1248, 1260, 2340, 2520, 3360, 4680, 5040, 5460, 6240, 6552, 8160, 8736, 9360, 10080, 11424, 16380, 21216, 26208, 27360, 32760, 38304, 43680, 57120, 65520, 71136, 74592, 106080, 131040, 147168, 148512, 171360, 191520, 202464, 325920, 355680, 372960
Offset: 1
Keywords
Examples
6 is a term because for the primes up to 6, (2, 3 and 5), b^sigma(6) == b^phi(6) == b^numdiv(6) == b^6 (mod 6). This is sufficient to prove for all values b up to 6.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..510
Crossrefs
Cf. A124240.
Programs
-
Mathematica
fQ[n_] := Block[{b = 2, s = DivisorSigma[1, n], e = EulerPhi[n], d = DivisorSigma[0, n]}, While[b < n && PowerMod[b, s, n] == PowerMod[b, e, n] == PowerMod[b, d, n] == PowerMod[b, n, n], b = NextPrime@ b]; b >= n]; lst = {1}; k = 2; While[k < 400000, If[ fQ@ k, AppendTo[lst, k]]; k ++]; lst (* Robert G. Wilson v, Nov 04 2016 *)
-
PARI
isk(n, k) = {Mod(k, n)^sigma(n)==Mod(k, n)^n && Mod(k, n)^eulerphi(n)==Mod(k, n)^n && Mod(k, n)^numdiv(n)==Mod(k, n)^n} is(n) = my(i);forprime(i=2, n, if(isk(n, i)==0,return(0))) ; 1 upto(lim) = my(l=List());for(n=1, lim, if(is(n), listput(l,n))); l
Comments