cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277178 a(n) = Sum_{k=0..n} k*binomial(2*k,k)/2.

Original entry on oeis.org

0, 1, 7, 37, 177, 807, 3579, 15591, 67071, 285861, 1209641, 5089517, 21314453, 88918353, 369734553, 1533115953, 6341759073, 26177411943, 107853629643, 443633635743, 1822098923943, 7473806605563, 30618895206483, 125303348573883, 512274592771083, 2092407173242983, 8539348101568335
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 02 2016

Keywords

Crossrefs

Row 3 of A323222.

Programs

  • Maple
    a:=n->sqrt(-1/27)-((n+1)/2)*binomial(2*(n+1),n+1)*hypergeom([1,n+3/2],[n+1],4):
    seq(simplify(a(n)), n=0..26); # Peter Luschny, Oct 03 2016
  • Mathematica
    Table[Binomial[2 n, n] (2 n + 1 - Hypergeometric2F1[1, -n, 1/2 - n, 1/4])/3, {n, 0, 30}]
  • PARI
    {a(n) = sum(k=0, n, k*binomial(2*k, k))/2} \\ Seiichi Manyama, Jan 29 2019

Formula

a(n) = binomial(2*n,n) * (2*n + 1 - hypergeom([1,-n], [1/2-n], 1/4))/3.
a(n+1) - a(n) = A002457(n) = (2*n+1)!/n!^2.
Recurrence: (5*n + 2) * a(n) = (4*n + 2) * a(n-1) + n * a(n+1).
a(n) ~ sqrt(n) * 2^(2*n+1) / (3*sqrt(Pi)). - Vaclav Kotesovec, Jan 29 2019
G.f.: x/(1-x) * (1-4*x)^(-3/2). - Seiichi Manyama, Jan 29 2019