A277187 Numbers n such that A001158(n) == 1 (mod n).
2, 3, 4, 5, 7, 8, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 36, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 289, 293
Offset: 1
Examples
a(1) = 2 because sigma_3(2) = 1^3 + 2^3 = 9 and 9 == 1 (mod 2); a(2) = 3 because sigma_3(3) = 1^3 + 3^3 = 28 and 28 == 1 (mod 3); a(3) = 4 because sigma_3(4) = 1^3 + 2^3 + 4^3 = 73 and 73 == 1 (mod 4), etc.
Programs
-
Mathematica
Select[Range[300], Mod[DivisorSigma[3, #1], #1] == 1 & ]
Extensions
Edited by Ilya Gutkovskiy, Dec 26 2016
Comments