cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A277006 a(n) = A005940(1+A003714(n)); permutation of squarefree numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 15, 11, 14, 21, 35, 30, 13, 22, 33, 55, 42, 77, 70, 105, 17, 26, 39, 65, 66, 91, 110, 165, 143, 154, 231, 385, 210, 19, 34, 51, 85, 78, 119, 130, 195, 187, 182, 273, 455, 330, 221, 286, 429, 715, 462, 1001, 770, 1155, 23, 38, 57, 95, 102, 133, 170, 255, 209, 238, 357, 595, 390, 247, 374, 561, 935, 546, 1309, 910, 1365, 323
Offset: 0

Views

Author

Antti Karttunen, Oct 07 2016

Keywords

Comments

Permutation of A005117 (squarefree numbers).

Crossrefs

Programs

Formula

a(n) = A005940(1+A003714(n)).
Other identities.
For n >= 0, A048675(a(n)) = A087808(A003714(n)) = A048679(n).
For n >= 1, a(A000045(n+1)) = A000040(n).

A277195 Permutation of nonnegative integers: a(n) = A022290(A277010(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 13, 9, 7, 21, 34, 10, 14, 55, 22, 89, 12, 144, 15, 35, 11, 233, 56, 23, 377, 17, 610, 90, 987, 36, 1597, 16, 57, 145, 2584, 4181, 234, 24, 25, 6765, 91, 19, 10946, 17711, 378, 18, 38, 28657, 611, 46368, 37, 988, 146, 75025, 26, 235, 1598, 58, 121393, 196418, 59, 317811, 20, 2585, 514229, 832040, 27, 379, 1346269, 93, 92
Offset: 1

Views

Author

Antti Karttunen, Oct 07 2016

Keywords

Comments

Note the indexing: domain starts from 1, but the range includes also 0.

Crossrefs

Programs

  • Python
    from math import isqrt
    from sympy import fibonacci, mobius, primepi, factorint
    def A277195(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return sum(fibonacci(primepi(p)+i) for i, p in enumerate(factorint(bisection(f), multiple=True),1)) # Chai Wah Wu, Aug 31 2024
  • Scheme
    (define (A277195 n) (A022290 (A277010 n)))
    

Formula

Showing 1-2 of 2 results.