cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277198 a(n) = gcd(A260443(n), A260443(n+1)).

Original entry on oeis.org

1, 1, 3, 1, 1, 3, 15, 1, 1, 15, 15, 5, 5, 15, 105, 1, 1, 105, 75, 5, 5, 375, 525, 7, 7, 525, 525, 35, 35, 105, 1155, 1, 1, 1155, 525, 245, 35, 2625, 18375, 7, 7, 91875, 13125, 35, 245, 18375, 40425, 11, 11, 40425, 25725, 245, 245, 128625, 202125, 77, 77, 40425, 40425, 385, 385, 1155, 15015, 1, 1, 15015, 5775, 2695, 2695, 1414875, 1414875, 77, 77
Offset: 0

Views

Author

Antti Karttunen, Oct 10 2016

Keywords

Crossrefs

Cf. A277327, A277328 (number of prime factors).

Programs

  • PARI
    A=[];
    A003961(n)=my(f=factor(n)); f[, 1] = apply(p->nextprime(p+1), f[, 1]); factorback(f)
    A260443(n)=if(n<3, return(n+1)); if(#AA260443(n\2)*A260443(n\2+1), A003961(A260443(n/2)))
    a(n)=gcd(A260443(n), A260443(n+1)) \\ Charles R Greathouse IV, Oct 13 2016
  • Scheme
    (define (A277198 n) (gcd (A260443 (+ 1 n)) (A260443 n)))
    ;; A more practical version, needing only an implementation of A000040:
    (define (A277198 n) (product_primes_to_kth_powers (gcd_of_exp_lists (A260443as_coeff_list n) (A260443as_coeff_list (+ 1 n)))))
    (define (product_primes_to_kth_powers nums) (let loop ((p 1) (nums nums) (i 1)) (cond ((null? nums) p) (else (loop (* p (expt (A000040 i) (car nums))) (cdr nums) (+ 1 i))))))
    (definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))
    (define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))
    (define (gcd_of_exp_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (gcd_of_exp_lists nums2 nums1)) (else (map min nums1 (append nums2 (make-list (- len1 len2) 0)))))))
    

Formula

a(n) = gcd(A260443(n), A260443(n+1)).