cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277209 Partial sums of repdigit numbers (A010785).

Original entry on oeis.org

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 56, 78, 111, 155, 210, 276, 353, 441, 540, 651, 873, 1206, 1650, 2205, 2871, 3648, 4536, 5535, 6646, 8868, 12201, 16645, 22200, 28866, 36643, 45531, 55530, 66641, 88863, 122196, 166640, 222195, 288861, 366638, 455526, 555525, 666636, 888858, 1222191, 1666635, 2222190
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 05 2016

Keywords

Comments

More generally, the ordinary generating function for the partial sums of numbers that are repdigits in base k (for k > 1) is (Sum_{m = 1..(k-1)} m*x^m)/((1 - x)*(1 - x^(k-1))*(1 - k*x^(k-1))).

Examples

			a(0)=0;
a(1)=0+1=1;
a(2)=0+1+2=3;
a(3)=0+1+2+3=6;
...
a(10)=0+1+2+3+4+5+6+7+8+9+11=56;
a(11)=0+1+2+3+4+5+6+7+8+9+11+22=78;
a(12)=0+1+2+3+4+5+6+7+8+9+11+22+33=111, etc.
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4 + 6 x^5 + 7 x^6 + 8 x^7 + 9 x^8)/((1 - x) (1 - 10 x^9) (1 - x^9)), {x, 0, 50}], x]

Formula

G.f.: x*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 8*x^7 + 9*x^8)/((1 - x)*(1 - x^9)*(1 - 10*x^9)).
a(n) = A000217(n) for n < 10.
a(n) = A046489(n-1) for n < 19.